Article

Broeckling, C.D. et al. Metabolic profiling of Medicago truncatula cell cultures reveals the effects of biotic and abiotic elicitors on metabolism. J. Exp. Bot. 56, 323-336

The Samuel Roberts Noble Foundation, Plant Biology, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA.
Journal of Experimental Botany (Impact Factor: 5.53). 02/2005; 56(410):323-36. DOI: 10.1093/jxb/eri058
Source: PubMed
ABSTRACT
GC-MS-based metabolite profiling was used to analyse the response of Medicago truncatula cell cultures to elicitation with methyl jasmonate (MeJa), yeast elicitor (YE), or ultraviolet light (UV). Marked changes in the levels of primary metabolites, including several amino acids, organic acids, and carbohydrates, were observed following elicitation with MeJa. A similar, but attenuated response was observed following YE elicitation, whereas little response was observed following UV elicitation. MeJa induced the accumulation of the triterpene beta-amyrin, a precursor to the triterpene saponins, and LC-MS analysis confirmed the accumulation of triterpene saponins in MeJa-elicited samples. In addition, YE induced a slight, but significant accumulation of shikimic acid, an early precursor to the phenylpropanoid pathway, which was also demonstrated to be YE-inducible by LC-MS analyses. Correlation analyses of metabolite relationships revealed perturbation of the glycine, serine, and threonine biosynthetic pathway, and suggested the induction of threonine aldolase activity, an enzyme as yet uncharacterized from plants. Members of the branched chain amino acid pathway accumulated in a concerted fashion, with the strongest correlation being that between leucine and isoleucine (r2=0.941). While UV exposure itself had little effect on primary metabolites, the experimental procedure, as revealed by control treatments, induced changes in several metabolites which were similar to those following MeJa elicitation. Sucrose levels were lower in MJ- and YE-elicited samples compared with control samples, suggesting that a portion of the effects observed on the primary metabolic pool are a consequence of fundamental metabolic repartitioning of carbon resources rather than elicitor-specific induction. In addition, beta-alanine levels were elevated in all elicited samples, which, when viewed in the context of other elicitation responses, suggests the altered metabolism of coenzyme A and its esters, which are essential in secondary metabolism.

Full-text

Available from: Mohamed A Farag