Cell-Binding Domain Context Affects Cell Behavior on Engineered Proteins

Division of Chemistry and Chemical Engineering, California Institute of Technology, Mail Code 210-41, Pasadena, California 91125, USA.
Biomacromolecules (Impact Factor: 5.75). 01/2005; 6(1):318-23. DOI: 10.1021/bm049627q
Source: PubMed


A family of artificial extracellular matrix proteins developed for application in small-diameter vascular grafts is used to examine the importance of cell-binding domain context on cell adhesion and spreading. The engineered protein sequences are derived from the naturally occurring extracellular matrix proteins elastin and fibronectin. While each engineered protein contains identical CS5 cell-binding domain sequences, the lysine residues that serve as cross-linking sites are either (i) within the elastin cassettes or (ii) confined to the ends of the protein. Endothelial cells adhere specifically to the CS5 sequence in both of these proteins, but cell adhesion and spreading are more robust on proteins in which the lysine residues are confined to the terminal regions of the chain. These results may be due to altered protein conformations that affect either the accessibility of the CS5 sequence or its affinity for the alpha(4)beta(1) integrin receptor on the endothelial cell surface. Amino acid choice outside the cell-binding domain can thus have a significant impact on the behavior of cells cultured on artificial extracellular matrix proteins.

Download full-text


Available from: Sarah Heilshorn
  • Source
    • "In this assay, polypeptides (more than three peptide bonds) reduce a copper reagent (Cu 2+ to Cu 1+ ) within an alkaline medium, and the reduced copper state is detected by a sensitive colorimetric detection reagent. The spectrophotometric absorbance (λ = 562 nm) of the reacted solution is proportional to the amount of protein present on the surface; the absolute concentration is determined using soluble calibration standards of the protein of interest (Heilshorn et al., 2005; Ishii-Watabe et al., 2007; Puleo et al., 2002; Shoichet et al., 1994; Stich, 1990). Physical adsorption isotherms were prepared using this assay for the RGD, YIGSR, and NCAM proteins by adsorbing proteins on glass surfaces using solutions containing 0–6 mg/mL protein, Figure 5. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Neural prosthetic implants are currently being developed for the treatment and study of both peripheral and central nervous system disorders. Effective integration of these devices upon implantation is a critical hurdle to achieving function. As a result, much attention has been directed towards the development of biocompatible coatings that prolong their in vivo lifespan. In this work, we present a novel approach to fabricate such coatings, which specifically involves the use of surface-adsorbed, nanoscale-designed protein polymers to prepare reproducible, customized surfaces. A nanoscale modular design strategy was employed to synthesize six engineered, recombinant proteins intended to mimic aspects of the extracellular matrix proteins fibronectin, laminin, and elastin as well as the cell-cell adhesive protein neural cell adhesion molecule. Physical adsorption isotherms were experimentally determined for these engineered proteins, allowing for direct calculation of the available ligand density present on coated surfaces. As confirmation that ligand density in these engineered systems impacts neuronal cell behavior, we demonstrate that increasing the density of fibronectin-derived RGD ligands on coated surfaces while maintaining uniform protein surface coverage results in enhanced neurite extension of PC-12 cells. Therefore, this engineered protein adsorption approach allows for the facile preparation of tunable, quantifiable, and reproducible surfaces for in vitro studies of cell-ligand interactions and for potential application as coatings on neural implants.
    Full-text · Article · Feb 2009 · Frontiers in Neuroengineering
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recombinant synthesis of elastin-mimetic proteins has been employed for several decades, however, long-term biocompatibility and biostability of such proteins was not fully defined. We present virtually crosslinked elastin-mimetic proteins which exhibit exceptional biocompatibility and long-term biostability over a period of at least seven months. This report is the first evidence of a non-chemically or ionically crosslinked system that exhibits long-term in vivo stability. Although, physically crosslinked protein-based materials possess a number of advantages over their chemically crosslinked counterparts, physical crosslinks and the related domains so formed may be deformed or damaged at applied stresses lower than those required to disrupt covalent crosslinks. In this regard, we have synthesized a new class of recombinant elastin-mimetic triblock copolymer capable of both physical and chemical crosslinking. We have demonstrated that chemical crosslinking provides an independent mechanism for control of protein mechanical responses. Specifically, elastic modulus was enhanced and creep strain reduced through the addition of chemical crosslinking sites. A number of reports have described the design of synthetic genes, which encode elastin-like proteins for bacterial expression in Escherichia coli. Although advantages with this expression system exist, significant limitations including the lack of eukaryotic post-translational systems, the tendency to sequester mammalian proteins into inclusion bodies, difficult purification protocols, and endotoxin contamination have been noted. We demonstrate the expression of a recombinant elastin-mimetic protein from P. pastoris. A novel synthetic strategy, monomer library concatamerization, was utilized in designing non-repetitive elastin genes for highly repetitive protein sequences. It is likely that this strategy will be useful for creating large, repetitive genes for a variety of expression systems in order to more closely approach the genetic diversity inherent to native DNA sequences. All told, elastin-based protein polymers are a promising class of material characterized by high degree of biocompatibility, excellent biostability, and a tunable range of mechanical properties from plastic to elastic. A variety of options facilitate the processing of these biopolymers into chemically crosslinked or non-crosslinked gels, films, or nanofibers for any of a number of implant applications including structural components of artificial organs and engineered living tissues, carriers for controlled drug release, or biocompatible surface coatings. Ph.D. Committee Chair: Elliot Chaikof; Committee Member: Marc Levenston; Committee Member: Robert Nerem; Committee Member: Vincent Conticello; Committee Member: Yadong Wang
    Preview · Article ·
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Biomaterials play crucial roles in reconstructive surgery, tissue engineering and regenerative medicine. Protein engineering offers powerful solutions to the challenges posed by the creation of well-defined, multifunctional materials that guide cell and tissue behavior. Especially challenging is the complex interplay between mechanical and biological properties in determining the success or failure of biomaterials designed for clinical use.
    Preview · Article · Sep 2005 · Current Opinion in Biotechnology
Show more