Global Burden of Hypertension: Analysis of Worldwide Data

Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA.
The Lancet (Impact Factor: 45.22). 01/2005; 365(9455):217-23. DOI: 10.1016/S0140-6736(05)17741-1
Source: PubMed


Reliable information about the prevalence of hypertension in different world regions is essential to the development of national and international health policies for prevention and control of this condition. We aimed to pool data from different regions of the world to estimate the overall prevalence and absolute burden of hypertension in 2000, and to estimate the global burden in 2025.
We searched the published literature from Jan 1, 1980, to Dec 31, 2002, using MEDLINE, supplemented by a manual search of bibliographies of retrieved articles. We included studies that reported sex-specific and age-specific prevalence of hypertension in representative population samples. All data were obtained independently by two investigators with a standardised protocol and data-collection form.
Overall, 26.4% (95% CI 26.0-26.8%) of the adult population in 2000 had hypertension (26.6% of men [26.0-27.2%] and 26.1% of women [25.5-26.6%]), and 29.2% (28.8-29.7%) were projected to have this condition by 2025 (29.0% of men [28.6-29.4%] and 29.5% of women [29.1-29.9%]). The estimated total number of adults with hypertension in 2000 was 972 million (957-987 million); 333 million (329-336 million) in economically developed countries and 639 million (625-654 million) in economically developing countries. The number of adults with hypertension in 2025 was predicted to increase by about 60% to a total of 1.56 billion (1.54-1.58 billion).
Hypertension is an important public-health challenge worldwide. Prevention, detection, treatment, and control of this condition should receive high priority.

Download full-text


Available from: Patricia M Kearney
  • Source
    • "According to the WHO, hypertension has become a significant health concern in the Asian region, affecting more than 35 % of the adult population[12]. The two fast-growing economies, India, and China, have a huge burden of hypertension and are projected to proliferate by 2025[13]. Bangladesh, a developing country in South Asia, has been experiencing an epidemiologic transition from communicable diseases to NCDs[14]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Hypertension is an increasing problem in Southeast Asia, particularly in Bangladesh. Although some epidemiological studies on hypertension have been conducted in Bangladesh, the factors associated with hypertension in this nation remain unclear. We aimed to determine the factors associated with hypertension among the adults in Bangladesh. Methods We conducted a cross-sectional study using data from the nationally representative 2011 Bangladesh Demographic and Health Survey (BDHS). A total of 7,839 (3,964 women and 3,875 men) adults aged 35 years and older who participated in the survey was included. Hypertension was defined by a systolic blood pressure ≥ 140 mmHg and/or, diastolic blood pressure ≥ 90 mmHg and/or, receipt of an anti-hypertensive medication at time of the survey. The degree of association between the risk factors and the outcome was assessed by the odd ratio (OR) obtained from the bivariate and multivariable logistic regression models. Results The overall prevalence of hypertension was 26.4 %, and the prevalence was higher in women (32.4 %) than men (20.3 %). Study participants with the age group of 60–69 years had higher odds of having hypertension (AOR: 3.77, 95 % CI: 3.01–4.72) than the age group 35–39 years. Moreover, individuals who had higher educational attainment (AOR: 1.63, 95 % C.I: 1.25–2.14) and higher wealth status (AOR = 1.91, 95 % CI: 1.54–2.38) had higher odds of having hypertension than the individuals with no education and lower social status, respectively. The analysis also showed that high BMI (AOR: 2.19, 95 % C.I: 1.87–2.57) and having diabetes (AOR: 1.54, 95 % C.I: 1.31–1.83) were associated with the increasing risk of hypertension. Conclusions Our study shows that the risk of hypertension was significantly associated with older age, sex, education, place of residence, working status, wealth index, BMI, and diabetes. Moreover, hypertension is largely untreated, especially in rural settings. The health system needs to develop appropriate strategies including early diagnosis, awareness via mass media, and health education programs for changing lifestyles should be initiated for older age, wealthy, and/or higher educated individuals in Bangladesh. Moreover, area-specific longitudinal research is necessary to find out the underlying causes of regional variations.
    Full-text · Article · Jan 2016 · BMC Cardiovascular Disorders
  • Source
    • "Hypertension contributes to 62 % of all strokes, 49 % of global heart disease burden and causes an estimated 7.1 million deaths a year[1,2]. In most real-world datasets, however, fewer than 50 % of subjects are at target despite a range of pharmacological options. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Renal denervation (RDN) may lower blood pressure (BP); however, it is unclear whether medication changes may be confounding results. Furthermore, limited data exist on pattern of ambulatory blood pressure (ABP) response—particularly in those prescribed aldosterone antagonists at the time of RDN. Methods We examined all patients treated with RDN for treatment-resistant hypertension in 18 UK centres. Results Results from 253 patients treated with five technologies are shown. Pre-procedural mean office BP (OBP) was 185/102 mmHg (SD 26/19; n = 253) and mean daytime ABP was 170/98 mmHg (SD 22/16; n = 186). Median number of antihypertensive drugs was 5.0: 96 % ACEi/ARB; 86 % thiazide/loop diuretic and 55 % aldosterone antagonist. OBP, available in 90 % at 11 months follow-up, was 163/93 mmHg (reduction of 22/9 mmHg). ABP, available in 70 % at 8.5 months follow-up, was 158/91 mmHg (fall of 12/7 mmHg). Mean drug changes post RDN were: 0.36 drugs added, 0.91 withdrawn. Dose changes appeared neutral. Quartile analysis by starting ABP showed mean reductions in systolic ABP after RDN of: 0.4; 6.5; 14.5 and 22.1 mmHg, respectively (p < 0.001 for trend). Use of aldosterone antagonist did not predict response (p > 0.2). Conclusion In 253 patients treated with RDN, office BP fell by 22/9 mmHg. Ambulatory BP fell by 12/7 mmHg, though little response was seen in the lowermost quartile of starting blood pressure. Fall in BP was not explained by medication changes and aldosterone antagonist use did not affect response.
    Full-text · Article · Jan 2016 · Clinical Research in Cardiology
  • Source
    • "Hypertension, as a major cardiovascular disease risk factor, is a leading cause of morbidity and mortality worldwide, and places a major burden on individual and public health (Kearney et al., 2005). A large body of evidence bears out the rising interest in the contribution made by genetic factors to the development of hypertension. "

    Preview · Article · Jan 2016 · Genetics and molecular research: GMR
Show more