Memory Dysfunction

Geriatric Research Education Clinical Center, Edith Nourse Rogers Memorial Veterans Hospital, Bedford, Mass 01730, USA.
New England Journal of Medicine (Impact Factor: 55.87). 03/2005; 352(7):692-9. DOI: 10.1056/NEJMra041071
Source: PubMed
Download full-text


Available from: Andrew E Budson, Oct 17, 2014
  • Source
    • "Semantic memory is the system of human memory that stores concepts and facts, regardless of time or context. As a stricter definition, semantic memory is responsible for the storage of semantic categories and of natural and artificial concepts (Budson and Price, 2005; Patterson et al., 2007). How semantic memory is organized, and more specifically, which words are close to others and how this system is organized into subcategories, remains an open question (Rogers, 2008). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Purpose: Cochlear implants (CIs) enable children with severe and profound hearing impairments to perceive the sensation of sound sufficiently to permit oral language acquisition. So far, studies have focused mainly on technological improvements and general outcomes of implantation for speech perception and spoken language development. This study quantitatively explored the organization of the semantic networks of children with CIs in comparison to those of age-matched normal hearing (NH) peers. Method: Twenty seven children with CIs and twenty seven age- and IQ-matched NH children ages 7–10 were tested on a timed animal verbal fluency task (Name as many animals as you can). The responses were analyzed using correlation and network methodologies. The structure of the animal category semantic network for both groups were extracted and compared. Results: Children with CIs appeared to have a less-developed semantic network structure compared to age-matched NH peers. The average shortest path length (ASPL) and the network diameter measures were larger for the NH group compared to the CIs group. This difference was consistent for the analysis of networks derived from animal names generated by each group [sample-matched correlation networks (SMCN)] and for the networks derived from the common animal names generated by both groups [word-matched correlation networks (WMCN)]. Conclusions: The main difference between the semantic networks of children with CIs and NH lies in the network structure. The semantic network of children with CIs is under-developed compared to the semantic network of the age-matched NH children. We discuss the practical and clinical implications of our findings.
    Full-text · Article · Sep 2013 · Frontiers in Psychology
  • Source
    • "In accord with this notion, it is possible that the post-hoc judgment of agency, including the process of interest in this study, recruits memory processes involved in recall, and reflection on the action–feedback relationship occurred a short time earlier. The PCC is considered to be part of the Papez circuit, which is a network for memory encoding and retrieval [56], [57]. The precuneus is also reported to be active in memory retrieval [44]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The sense of agency is the attribution of oneself as the cause of one's own actions and their effects. Accurate agency judgments are essential for adaptive behaviors in dynamic environments, especially in conditions of uncertainty. However, it is unclear how agency judgments are made in ambiguous situations where self-agency and non-self-agency are both possible. Agency attribution is thus thought to require higher-order neurocognitive processes that integrate several possibilities. Furthermore, neural activity specific to self-attribution, as compared with non-self-attribution, may reflect higher-order critical operations that contribute to constructions of self-consciousness. Based on these assumptions, the present study focused on agency judgments under ambiguous conditions and examined the neural correlates of this operation with functional magnetic resonance imaging. Participants performed a simple but demanding agency-judgment task, which required them to report on whether they attributed their own action as the cause of a visual stimulus change. The temporal discrepancy between the participant's action and the visual events was adaptively set to be maximally ambiguous for each individual on a trial-by-trial basis. Comparison with results for a control condition revealed that the judgment of agency was associated with activity in lateral temporo-parietal areas, medial frontal areas, the dorsolateral prefrontal area, and frontal operculum/insula regions. However, most of these areas did not differentiate between self- and non-self-attribution. Instead, self-attribution was associated with activity in posterior midline areas, including the precuneus and posterior cingulate cortex. These results suggest that deliberate self-attribution of an external event is principally associated with activity in posterior midline structures, which is imperative for self-consciousness.
    Full-text · Article · Aug 2013 · PLoS ONE
  • Source
    • "Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by neuronal loss and extracellular senile plaques, leading to memory deficits [1] [2]. Studies suggest that AD pathogenesis is associated with an invariant pathological cascade initiated by the accumulation of ␤-amyloid (A␤), resulting in a neuroinflammatory process that may cause neural dysfunction, cell death, and further neurodegeneration [3] [4] [5]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Memory deficit is a marker of Alzheimer's disease (AD) that has been highly associated with the dysfunction of cyclic GMP (cGMP) signaling and an ongoing inflammatory process. Phosphodiesterase-5 (PDE5) inhibitors prevent the breakdown of cGMP and are currently studied as a possible target for cognitive enhancement. However, it is still unknown whether inhibition of PDE5 reversed β-amyloid peptide (Aβ)-induced neuroinflammation in APP/PS1 transgenic (Tg APP/PS1) mice. The present study evaluated the cognitive behaviors, inflammatory mediators, and cGMP/PKG/pCREB signaling in 15-month-old Tg APP/PS1 mice and age-matched wild-type (WT) mice that were treated with PDE5 inhibitor sildenafil and the inhibitor of cGMP-dependent protein kinase Rp-8-Br-PET-cGMPS. In comparison with WT mice, Tg APP/PS1 mice were characterized by impaired cognitive ability, neuroinflammatory response, and down-regulated cGMP signaling. Sildenafil reversed these memory deficits and cGMP/PKG/pCREB signaling dysfunction; it also reduced both the soluble Aβ1-40 and Aβ1-42 levels in the hippocampus. These effects of sildenafil were prevented by intra-hippocampal infusion of the Rp-8-Br-PET-cGMPS. These results suggest that sildenafil could restore cognitive deficits in Tg APP/PS1 mice by the regulation of PKG/pCREB signaling, anti-inflammatory response and reduction of Aβ levels.
    Full-text · Article · May 2013 · Behavioural brain research
Show more