Zhu C-B, Carneiro AM, Dostmann WR, Hewlett WA, Blakely RD. p38 MAPK activation elevates serotonin transport activity via a trafficking-independent, protein phosphatase 2A-dependent process. J Biol Chem 280: 15649-15658

University of Vermont, Burlington, Vermont, United States
Journal of Biological Chemistry (Impact Factor: 4.57). 05/2005; 280(16):15649-58. DOI: 10.1074/jbc.M410858200
Source: PubMed


Presynaptic, plasma membrane serotonin (5-hydroxytryptamine; 5-HT) transporters (SERTs) clear 5-HT following vesicular release and are regulated through trafficking-dependent pathways. Recently, we provided evidence for a trafficking-independent mode of SERT regulation downstream of adenosine receptor (AR) activation that is sensitive to p38 MAPK inhibitors. Here, we probe this pathway in greater detail, demonstrating elevation of 5-HT transport by multiple p38 MAPK activators (anisomycin, H(2)O(2), and UV radiation), in parallel with p38 MAPK phosphorylation, as well as suppression of anisomycin stimulation by p38 MAPK siRNA treatments. Studies with transporter-transfected Chinese hamster ovary cells reveal that SERT stimulation is shared with the human norepinephrine transporter but not the human dopamine transporter. Saturation kinetic analyses of anisomycin-SERT activity reveal a selective reduction in 5-HT K(m) supported by a commensurate increase in 5-HT potency (K(i)) for displacing surface antagonist binding. Anisomycin treatments that stimulate SERT activity do not elevate surface SERT surface density whereas stimulation is lost with preexposure of cells to the surface-SERT inactivating reagent, 2-(trimethylammonium)ethyl methane thiosulfonate. Guanylyl cyclase (1H-(1,2,4)-oxadiazolo[4,3-a]-quinoxalin-1-one) and protein kinase G inhibitors (H8, DT-2) block AR stimulation of SERT yet fail to antagonize SERT stimulation by anisomycin. We thus place p38 MAPK activation downstream of protein kinase G in a SERT-catalytic regulatory pathway, distinct from events controlling SERT surface density. In contrast, the activity of protein phosphatase 2A inhibitors (fostriecin and calyculin A) to attenuate anisomycin stimulation of 5-HT transport suggests that protein phosphatase 2A is a critical component of the pathway responsible for p38 MAPK up-regulation of SERT catalytic activity.

Full-text preview

Available from:
  • Source
    • "More important for the control of anxiety and arousal responses, A 3 ARs are physically associated with SERT, and the activation of these receptors rapidly and transiently increases this association and the surface trafficking of SERT (Zhu et al. 2011). The activation of A 3 ARs has been shown to increase serotonin uptake in an cGMP-and p38 mitogen-activated protein kinase (MAPK)-dependent way (Okada et al. 1997, 1999; Zhu et al. 2007), a response that has also been observed in stable expression systems, including RBL2H3 cells (Miller and Hoffman 1994; Zhu et al. 2004), CHO cells (Zhu et al. 2005), and the immortalized serotonergic cell line RN46A (Chang et al. 2012). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Rationale The adenosine A3 receptor and the nitric oxide (NO) pathway regulate the function and localization of serotonin transporters (SERTs). These transporters regulate extracellular serotonin levels, which are correlated with defensive behavior. Objective The purpose of this study was to understand the role of the A3AR on anxiety and arousal models in zebrafish, and whether this role is mediated by the nitrergic modulation of serotonin uptake. Methods The effects of IB-MECA (0.01 and 0.1 mg/kg) were assessed in a series of behavioral tasks in adult zebrafish, as well as on extracellular serotonin levels in vivo and serotonin uptake in brain homogenates. Finally, the interaction between IB-MECA and drugs blocking voltage-dependent calcium channels (VDCCs), NO synthase, and SERT was analyzed. Results At the lowest dose, IB-MECA decreased bottom dwelling and scototaxis, while at the highest dose, it also decreased shoaling, startle probability, and melanophore responses. These effects were accompanied by an increase in brain extracellular serotonin levels. IB-MECA also concentration-dependently increased serotonin uptake in vitro. The effects of IB-MECA on extracellular 5-HT, scototaxis, and geotaxis were blocked by l-NAME, while only the effects on 5-HT and scototaxis were blocked by verapamil. In vitro, the increase in 5-HT uptake was dependent on VDCCs and NO. Finally, fluoxetine blocked the effect of IB-MECA on scototaxis, but not geotaxis. Conclusion These results suggest that the effect of IB-MECA on scototaxis are mediated by a VDCC-NO-SERT pathway. While NO seems to mediate the effects of IB-MECA on geotaxis, neither VDCCs nor SERT seems to be involved in this process.
    Full-text · Article · Nov 2014 · Psychopharmacology
  • Source
    • "This LPS-induced increase in SERT function is in correspondence with in vitro, ex vivo and in vivo studies, showing that LPS increases proinflammatory cytokines and thereby SERT function (within 1 h) (Mossner et al., 1998; Zhu et al., 2006; Zhu et al., 2010). It has been shown that this process is p38 MAPK dependent (Zhu et al., 2004; Zhu et al., 2005; Zhu et al., 2010). Furthermore, there are strong indications that LPS-and proinflammatory cytokine-induced increases in SERT function are necessary for the development of both depression-like behavior and anhedonia. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Peripheral administration of lipopolysaccharide (LPS) in rodents induces anhedonia, i.e. the inability to experience pleasure. Recently, we reported that serotonin transporter (SERT) function is required for LPS-induced anhedonia. Less is known about the effect of LPS on the biological activity of dopamine transporters (DAT) and norepinephrine transporters (NET). Therefore, in vivo microdialysis was performed in the nucleus accumbens and medial prefrontal cortex of C57BL6/J mice exposed to saline or LPS (133µg/kg i.p.). To investigate the possible involvement of different monoamine transporters, the triple reuptake inhibitor DOV 216,303 or saline was i.p. injected 30min before the saline/LPS injection. The dose of LPS, shown to decrease responding for brain stimulation reward in mice, significantly increased extracellular levels of monoamine metabolites (5-HIAA, DOPAC and HVA) in the nucleus accumbens and medial prefrontal cortex. Remarkably, DOV 216,303 abolished LPS-induced DOPAC and HVA formation in the nucleus accumbens, suggesting that LPS increases DAT activity in this brain area. DOV 216,303 also inhibited LPS-induced DOPAC and HVA formation in the medial prefrontal cortex. Since DAT density is very low in this brain structure, reuptake of DA predominantly takes place via NET, suggesting that LPS increases DAT and NET activity in the medial prefrontal cortex. Furthermore, DOV 216,303 pretreatment prevented LPS-induced 5-HIAA formation only in the medial prefrontal cortex, indicating that LPS increases prefrontal SERT activity. In conclusion, the present findings suggest that peripheral LPS increases DAT activity in the nucleus accumbens and increases NET and SERT activity in the medial prefrontal cortex of mice.
    Full-text · Article · Jan 2014 · European journal of pharmacology
  • Source
    • "Supporting an acute SERT regulation, adenosine A3 receptor stimulation increased SERT uptake function in rat basophilic leukemia (RBL-2H3) cells and mouse mid-brain and hippocampal synaptosomes. This effect is thought to be mediated by both a PKG-dependent surface density increase of the SERT, and p38-MAPK dependent activation of SERT intrinsic activity (Samuvel et al., 2005; Zhu et al., 2005). Multiple signaling pathways seem to contribute to the regulation of SERT mediated 5-HT clearance (Blakely et al., 2005). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Estradiol was found previously to have an antidepressant-like effect and to block the ability of selective serotonin reuptake inhibitors (SSRIs) to have an antidepressant-like effect. The antidepressant-like effect of estradiol was due to estrogen receptor β (ERβ) and/or GPR30 activation, whereas estradiol's blockade of the effect of an SSRI was mediated by ERα. This study focuses on investigating signaling pathways as well as interacting receptors associated with these two effects of estradiol. In vivo chronoamperometry was used to measure serotonin transporter (SERT) function. The effect of local application of estradiol or selective agonists for ERα (PPT) or ERβ (DPN) into the CA3 region of the hippocampus of ovariectomized (OVX) rats on 5-hydroxytryptamine (5-HT) clearance as well as on the ability of fluvoxamine to slow 5-HT clearance was examined after selective blockade of signaling pathways or that of interacting receptors. Estradiol- or DPN-induced slowing of 5-HT clearance mediated by ERβ was blocked after inhibition of MAPK/ERK1/2 but not of PI3K/Akt signaling pathways. This effect also involved interactions with TrkB, and IGF-1 receptors. Estradiol's or PPT's inhibition of the fluvoxamine-induced slowing of 5-HT clearance mediated by ERα, was blocked after inhibition of either MAPK/ERK1/2 or PI3K/Akt signaling pathways. This effect involved interactions with the IGF-1 receptor and with the metabotropic glutamate receptor 1, but not with TrkB. This study illustrates some of the signaling pathways required for the effects of estradiol on SERT function, and particularly shows that ER subtypes elicit different as well as common signaling pathways for their actions.
    Preview · Article · Jan 2014 · The International Journal of Neuropsychopharmacology
Show more