Small Interference RNA-mediated Gene Silencing of Human Biliverdin Reductase, but Not That of Heme Oxygenase-1, Attenuates Arsenite-mediated Induction of the Oxygenase and Increases Apoptosis in 293A Kidney Cells

Department of Biochemistry and Biophysics , University of Rochester, Rochester, New York, United States
Journal of Biological Chemistry (Impact Factor: 4.57). 05/2005; 280(17):17084-92. DOI: 10.1074/jbc.M413121200
Source: PubMed


BVR reduces biliverdin, the HO-1 and HO-2 product, to bilirubin. Human biliverdin (BVR) is a serine/threonine kinase activated by free radicals. It is a leucine zipper (bZip) DNA-binding protein and a regulatory factor for 8/7-bp AP-1-regulated genes, including HO-1 and ATF-2/CREB. Presently, small interference (si) RNA constructs were used to investigate the role of human BVR in sodium arsenite (As)-mediated induction of HO-1 and in cytoprotection against apoptosis. Activation of BVR involved increased serine/threonine phosphorylation but not its protein or transcript levels. The peak activity at 1 h (4-5-fold) after treatment of 293A cells with 5 mum As preceded induction of HO-1 expression by 3 h. The following suggests BVR involvement in regulating oxidative stress response of HO-1: siBVR attenuated As-mediated increase in HO-1 expression; siBVR, but not siHO-1, inhibited As-dependent increased c-jun promoter activity; treatment of cells with As increased AP-1 binding of nuclear proteins; BVR was identified in the DNA-protein complex; and AP-1 binding of the in vitro translated BVR was phosphorylation-dependent and was attenuated by biliverdin. Most unexpectedly, cells transfected with siBVR, but not siHO-1, displayed a 4-fold increase in apoptotic cells when treated with 10 mum As as detected by flow cytometry. The presence of BVR small interference RNA augmented the effect of As on levels of cytochrome c, TRAIL, and DR-5 mRNA and cleavage of poly(ADP-ribose) polymerase. The findings describe the function of BVR in HO-1 oxidative response and, demonstrate, for the first time, not only that BVR advances the role of HO-1 in cytoprotection but also affords cytoprotection independent of heme degradation.

  • Source
    • "BLVR, the other enzyme involved in the heme catabolic pathway, is also implicated in the oxidative stress response [18]. Apart from its antioxidative effects, a cytoprotective action independent of heme degradation has been reported [19], [20]. In fact, BLVR has been demonstrated to affect cell signaling pathways by regulating stress-responsive genes, including both HMOX1 [21], [22], and HMOX2 [23]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Hepatitis C virus (HCV) infection is associated with systemic oxidative stress. Since the heme catabolic pathway plays an important role in antioxidant protection, we attempted to assess the gene expression of key enzymes of heme catabolism, heme oxygenase 1 (HMOX1), heme oxygenase 2 (HMOX2), and biliverdin reductase A (BLVRA) in the liver and peripheral blood leukocytes (PBL) of patients chronically infected with HCV. Gene expressions (HMOX1, HMOX2, BLVRA) and HCV RNA were analyzed in PBL of HCV treatment naïve patients (n = 58) and controls (n = 55), with a subset of HCV patients having data on hepatic gene expression (n = 35). Based upon the therapeutic outcome, HCV patients were classified as either responders (n = 38) or treatment-failure patients (n = 20). Blood samples in HCV patients were collected at day 0, and week 12, 24, 36, and 48 after the initiation of standard antiviral therapy. Compared to the controls, substantially increased BLVRA expression was detected in PBL (p<0.001) of therapeutically naïve HCV patients. mRNA levels of BLVRA in PBL closely correlated with those in liver tissue (r2 = 0.347,p = 0.03). A marked difference in BLVRA expression in PBL between the sustained responders and patients with treatment failure was detected at week 0 and during the follow-up (p<0.001). Multivariate analysis revealed that BLVRA basal expression in PBL was an independent predictor for sustained virological response (OR 15; 95% CI 1.05-214.2; P = 0.046). HMOX1/2 expression did not have any effect on the treatment outcome. Our results suggest that patients with chronic HCV infection significantly upregulate BLVRA expression in PBL. The lack of BLVRA overexpression is associated with non-responsiveness to standard antiviral therapy; whereas, HMOX1/2 does not seem to have any predictive potential.
    Full-text · Article · Mar 2013 · PLoS ONE
  • Source
    • "The small interfering RNA (siRNA) against HO-2 mRNA (target base 248-272), named siHO-2, and scrambled HO-2 siRNA (negative control) were used, as described previously (Ding et al. 2006). Likewise, a specific siRNA against HO-1, siHO-1 (Miralem et al. 2005), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) siRNA, siGAPDH (a control for siRNA treatment), were used (Ding et al. 2006). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Heme is an essential requirement for cell survival. Heme oxygenase (HO) is the rate-limiting enzyme in heme catabolism and consists of two isozymes, HO-1 and HO-2. To identify the protein that regulates the expression or function of HO-1 or HO-2, we searched for proteins that interact with both isozymes, using protein microarrays. We thus identified 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 4 (PFKFB4) that synthesizes or degrades fructose-2,6-bisphosphate, a key activator of glycolysis, depending on cellular microenvironments. Importantly, HO-2 and PFKFB4 are predominantly expressed in haploid spermatids. Here, we show a drastic reduction in expression levels of PFKFB4 mRNA and protein and HO-2 mRNA in HepG2 human hepatoma cells in responses to glucose deprivation (≤ 2.5 mM), which occurred concurrently with remarkable induction of HO-1 mRNA and protein. Knockdown of HO-2 expression in HepG2 cells, using small interfering RNA, caused PFKFB4 mRNA levels to decrease with a concurrent increase in HO-1 expression. Thus, in HepG2 cells, HO-1 expression was increased, when expression levels of HO-2 and PFKFB4 mRNAs were decreased. Conversely, overexpression of HO-2 in HepG2 cells caused the level of co-expressed PFKFB4 protein to increase. These results suggest a potential regulatory role for HO-2 in ensuring PFKFB4 expression. Moreover, in D407 human retinal pigment epithelial cells, glucose deprivation decreased the expression levels of PFKFB4, HO-1, and HO-2 mRNAs. Thus, glucose deprivation consistently down-regulated the expression of PFKFB4 and HO-2 mRNAs in both HepG2 cells and RPE cells. We therefore postulate that PFKFB4 and HO-2 are expressed in a coordinated manner to maintain glucose homeostasis.
    Full-text · Article · Sep 2012 · The Tohoku Journal of Experimental Medicine
  • Source
    • "Silencing BVR leads to a depletion of cellular bilirubin, increases cellular ROS and promotes apoptotic death in neuronal cultures (Baranano et al., 2002). Finally BVR can increase bilirubin production from heme degradation during oxidative stress (Miralem et al., 2005). In turn, the increase in UCB inhibits BVR and HO activity, maintaining a balanced intracellular biliverdin/bilirubin ratio (Maines, 2005). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Bilirubin, the end-product of heme catabolism, circulates in non-pathological plasma mostly as a protein-bound species. When bilirubin concentration builds up, the free fraction of the molecule increases. Unbound bilirubin then diffuses across blood-brain interfaces (BBIs) into the brain, where it accumulates and exerts neurotoxic effects. In this classical view of bilirubin neurotoxicity, BBIs act merely as structural barriers impeding the penetration of the pigment-bound carrier protein, and neural cells are considered as passive targets of its toxicity. Yet, the role of BBIs in the occurrence of bilirubin encephalopathy appears more complex than being simple barriers to the diffusion of bilirubin, and neural cells such as astrocytes and neurons can play an active role in controlling the balance between the neuroprotective and neurotoxic effects of bilirubin. This article reviews the emerging in vivo and in vitro data showing that transport and metabolic detoxification mechanisms at the blood-brain and blood-cerebrospinal fluid barriers may modulate bilirubin flux across both cellular interfaces, and that these protective functions can be affected in chronic unconjugated hyperbilirubinemia. Then the in vivo and in vitro arguments in favor of the physiological antioxidant function of intracerebral bilirubin are presented, as well as the potential role of transporters such as ABCC1 and metabolizing enzymes such as cytochromes P-450 in setting the cerebral cell- and structure-specific toxicity of bilirubin following hyperbilirubinemia. The relevance of these data to the pathophysiology of bilirubin-induced neurological diseases is discussed.
    Full-text · Article · May 2012 · Frontiers in Pharmacology
Show more