ACTH-induced caveolin-1 tyrosine phosphorylation is related to podosome assembly in Y1 adrenal cells

Departamento de Bioquímica Humana, Facultad de Medicina, Universidad de Buenos Aires, C1121ABG Buenos Aires, Argentina.
Experimental Cell Research (Impact Factor: 3.25). 05/2005; 304(2):432-42. DOI: 10.1016/j.yexcr.2004.11.019
Source: PubMed


Y1 adrenocortical cells respond to ACTH with a characteristic rounding-up that facilitates cAMP signaling, critical for transport of cholesterol to the mitochondria and increase in steroid secretion. We here demonstrate that caveolin-1 participates in coupling activation of protein kinase A (PKA) to the control of cell shape. ACTH/8-Br-cAMP induced reorganization of caveolin-1-positive structures in correlation with the cellular rounding-up. Concomitant with this change, there was an increase in the phosphorylation of caveolin-1 (Tyr-14) localized at focal adhesions (FA) with reorganization of FA to rounded, ringlike structures. Colocalization with phalloidin showed that phosphocaveolin is present at the edge of actin filaments and that after ACTH stimulation F-actin dots at the cell periphery become surrounded by phosphocaveolin-1. These observations along with electron microscopy studies revealed these structures as podosomes. Podosome assembly was dependent on both PKA and tyrosine kinase activities because their formation was impaired after treatment with specific inhibitors [myristoylated PKI (mPKI) or PP2, respectively] previous to ACTH/8-Br-cAMP stimulation. These results show for the first time that ACTH induces caveolin-1 phosphorylation and podosome assembly in Y1 cells and support the view that the morphological and functional responses to PKA activation in steroidogenic cells are related to cytoskeleton dynamics.

7 Reads
  • Source
    • "We found that the ring of podosomes in microglia was enriched in p-Tyr14Cav1. Cav1 has only been reported in invadopodia in three cell lines; that is, the nonphosphorylated form in two cancer cell lines [78,79], and the phosphorylated form in an ACTH-stimulated adrenal cell line [33]. Nox1 generates reactive oxygen species, which can activate protein kinases and inhibit protein tyrosine phosphatases [80]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: To perform their functions during development and after central nervous system injury, the brain's immune cells (microglia) must migrate through dense neuropil and extracellular matrix (ECM), but it is not known how they degrade the ECM. In several cancer cell lines and peripheral cells, small multi-molecular complexes (invadopodia in cancer cells, podosomes in nontumor cells) can both adhere to and dissolve the ECM. Podosomes are tiny multi-molecular structures (0.4 to 1 μm) with a core, rich in F-actin and its regulatory molecules, surrounded by a ring containing adhesion and structural proteins. Using rat microglia, we performed several functional assays: live cell imaging for chemokinesis, degradation of the ECM component, fibronectin, and chemotactic invasion through Matrigel™, a basement membrane type of ECM. Fluorescent markers were used with high-resolution microscopy to identify podosomes and their components. The fan-shaped lamella at the leading edge of migrating microglia contained a large F-actin-rich superstructure composed of many tiny (<1 μm) punctae that were adjacent to the substrate, as expected for cell-matrix contact points. This superstructure (which we call a podonut) was restricted to cells with lamellae, and conversely almost every lamella contained a podonut. Each podonut comprised hundreds of podosomes, which could also be seen individually adjacent to the podonut. Microglial podosomes contained hallmark components of these structures previously seen in several cell types: the plaque protein talin in the ring, and F-actin and actin-related protein (Arp) 2 in the core. In microglia, podosomes were also enriched in phosphotyrosine residues and three tyrosine-kinase-regulated proteins: tyrosine kinase substrate with five Src homology 3 domains (Tks5), phosphorylated caveolin-1, and Nox1 (nicotinamide adenine dinucleotide phosphate oxidase 1). When microglia expressed podonuts, they were able to degrade the ECM components, fibronectin, and Matrigel™. The discovery of functional podosomes in microglia has broad implications, because migration of these innate immune cells is crucial in the developing brain, after damage, and in disease states involving inflammation and matrix remodeling. Based on the roles of invadosomes in peripheral tissues, we propose that microglia use these complex structures to adhere to and degrade the ECM for efficient migration.
    Full-text · Article · Aug 2012 · Journal of Neuroinflammation
  • Source
    • "Then, cells were fixed with 4% paraformaldehyde in PBS for 10 minutes at room temperature and permeabilized with blocking solution (0.3% Triton X-100 and 1% BSA in PBS) for 60 minutes at room temperature. The detailed procedure was described previously [59]. Cells were incubated with anti-pERK1/2 cy2-conjugated antibody (1∶250) overnight at 4°C. "
    [Show abstract] [Hide abstract]
    ABSTRACT: ERK1/2 is known to be involved in hormone-stimulated steroid synthesis, but its exact roles and the underlying mechanisms remain elusive. Both ERK1/2 phosphorylation and steroidogenesis may be triggered by cAMP/cAMP-dependent protein kinase (PKA)-dependent and-independent mechanisms; however, ERK1/2 activation by cAMP results in a maximal steroidogenic rate, whereas canonical activation by epidermal growth factor (EGF) does not. We demonstrate herein by Western blot analysis and confocal studies that temporal mitochondrial ERK1/2 activation is obligatory for PKA-mediated steroidogenesis in the Leydig-transformed MA-10 cell line. PKA activity leads to the phosphorylation of a constitutive mitochondrial MEK1/2 pool with a lower effect in cytosolic MEKs, while EGF allows predominant cytosolic MEK activation and nuclear pERK1/2 localization. These results would explain why PKA favors a more durable ERK1/2 activation in mitochondria than does EGF. By means of ex vivo experiments, we showed that mitochondrial maximal steroidogenesis occurred as a result of the mutual action of steroidogenic acute regulatory (StAR) protein -a key regulatory component in steroid biosynthesis-, active ERK1/2 and PKA. Our results indicate that there is an interaction between mitochondrial StAR and ERK1/2, involving a D domain with sequential basic-hydrophobic motifs similar to ERK substrates. As a result of this binding and only in the presence of cholesterol, ERK1/2 phosphorylates StAR at Ser(232). Directed mutagenesis of Ser(232) to a non-phosphorylable amino acid such as Ala (StAR S232A) inhibited in vitro StAR phosphorylation by active ERK1/2. Transient transfection of MA-10 cells with StAR S232A markedly reduced the yield of progesterone production. In summary, here we show that StAR is a novel substrate of ERK1/2, and that mitochondrial ERK1/2 is part of a multimeric protein kinase complex that regulates cholesterol transport. The role of MAPKs in mitochondrial function is underlined.
    Full-text · Article · Feb 2008 · PLoS ONE
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pollen tube growth is localized at the apex and displays oscillatory dynamics. It is thought that a balance between intracellular turgor pressure (hydrostatic pressure, reflected by the cell volume) and cell wall loosening is a critical factor driving pollen tube growth. We previously demonstrated that water flows freely into and out of the pollen tube apical region dependent on the extracellular osmotic potential, that cell volume changes reflect changes in the intracellular pressure, and that cell volume changes differentially induce increases or decreases in specific phospholipid signals. This article shows that manipulation of the extracellular osmotic potential rapidly induces modulations in pollen tube growth rate frequencies, demonstrating that changes in the intracellular pressure are sufficient to reset the pollen tube growth oscillator. This indicates a direct link between intracellular hydrostatic pressure and pollen tube growth. Altering hydrodynamic flow through the pollen tube by replacing extracellular H2O with 2H2O adversely affects both cell volume and growth rate oscillations and induces aberrant morphologies. Normal growth and cell morphology are rescued by replacing 2H2O with H2O. Further studies revealed that the cell volume oscillates in the pollen tube apical region. These cell volume oscillations were not from changes in cell shape at the tip and were detectable up to 30 mum distal to the tip (the longest length measured). Cell volume in the apical region oscillates with the same frequency as growth rate oscillations but surprisingly the cycles are phase-shifted by 180 degrees . Raman microscopy yields evidence that hydrodynamic flow out of the apex may be part of the biomechanics that drive cellular expansion. The combined results suggest that hydrodynamic loading/unloading in the apical region induces cell volume oscillations and has a role in driving cell elongation and pollen tube growth.
    Full-text · Article · Feb 2006 · Cell Biochemistry and Biophysics
Show more