Osteocytes: A proposed multifunctional bone cell

ArticleinJournal of musculoskeletal & neuronal interactions 2(3):239-41 · April 2002with5 Reads
Impact Factor: 1.74 · Source: PubMed

    Abstract

    Most cell types are ascribed a single function. The osteoclast holds the unique distinction of performing only one function in the body - that of resorbing bone. The osteoblast has been ascribed the major function of bone matrix production. Other less well-defined cell types include progenitor cells and the nebulous cell type that can support osteoclast formation upon stimulation with various bone resorbing cytokines. Obviously, these cells could have other functions. The definition of an osteocyte is descriptive of its location - cells surrounded by mineralized matrix - not its function. For this year's Sun Valley Workshop on osteocytes, several proposed functions will be presented. First, a general consensus exists that osteocytes are most likely sensitive to mechanotransduction and translate mechanical strain into biochemical signals. Consensus does not exist on the nature of the mechanical strain, the form of the biochemical signals, the target cell(s), or the viability status of the osteocyte. Second, it is also proposed that this cell is incredibly adaptable and expresses plasticity in response to mechanical stimuli. In other words, this cell can readjust its responses to strain in the presence of other bone agents such as hormones and bone factors. Third, it will also be presented that osteocytes maintain systemic mineral homeostasis by regulating mineral release and deposition over the enormous surface area over which these cells interface with the surrounding matrix. Although osteocytes are terminally differentiated osteoblasts, they appear to have separate and distinct properties from their predecessors. Bone cell biologists loaded with an arsenal of bone anabolic and catabolic factors are examining the expression and effects of these factors on osteocytes. Engineers trained in mathematical modeling have generated new models of strain and connectivity to be tested. The unique morphology of osteocytes suggests that the cytoskeleton in these cells may function differently from osteoblasts and other cell types. Osteocytes may consist of different subpopulations; some that possess receptors for parathyroid hormone (PTH) and others that only express receptors for carboxyl terminal PTH suggesting different functions and responses. Osteocytes may respond rapidly to strain through glutamate receptor-like mechanisms, through calcium influxes, through gap junctions, and less rapidly through the production of small molecules and factors. Strain may take the form of substrate stretching and/or fluid flow. Osteocytes may communicate with other osteocytes and/or bone surface cells such as lining cells, stromal cells, osteoblasts, and/or osteoclasts and their precursors. The viability status of the osteocyte may determine the type of signals sent from these cells. If the cells are deprived of oxygen or nutrients, the apoptotic cells may send signals for initiation of resorption. If the cells and/or their dendritic process are ripped or torn by microdamage, they may send signals of both resorption and formation. If the majority of these theories are correct, then the osteocyte is the 'smart' cell that can direct or orchestrate the bone resorbing and bone forming cells even in its death and dying.