Gap junctional remodeling by hypoxia in cultured neonatal rat ventricular myocytes

Department of Pharmacology, Columbia University, New York, New York, United States
Cardiovascular Research (Impact Factor: 5.94). 05/2005; 66(1):64-73. DOI: 10.1016/j.cardiores.2005.01.014
Source: PubMed


Altered gap junctional coupling of ventricular myocytes plays an important role in arrhythmogenesis in ischemic heart disease. Since hypoxia is a major component of ischemia, we tested the hypothesis that hypoxia causes gap junctional remodeling accompanied by conduction disturbances.
Cultured neonatal rat ventricular myocytes were exposed to hypoxia (1% O(2)) for 15 min to 5 h, connexin43 (Cx43) expression was analyzed, and conduction velocity was measured using the Micro-Electrode Array data acquisition system.
After 15 min of hypoxia, conduction velocity was unaffected, while total Cx43, including the phosphorylated and nonphosphorylated isoforms, was increased. After 5 h of hypoxia, total Cx43 protein was decreased by 50%, while the nonphosphorylated Cx43 isoform was unchanged. Confocal analyses yielded a 55% decrease in the gap junctional Cx43 fluorescence signal, a 55% decrease in gap junction number, and a 26% decrease in size. The changes in Cx43 were not accompanied by changes in mRNA levels. The reduction in Cx43 protein levels was associated with a approximately 20% decrease in conduction velocity compared to normoxic cultures.
Short-term hypoxia (5 h) decreases Cx43 protein and conduction velocity, thereby contributing to the generation of an arrhythmogenic substrate.

Download full-text


Available from: Zaid Abassi, Jan 04, 2016
  • Source
    • "To determine whether the decrease in intercellular coupling and Cx43 protein expression by doxorubicin and the beneficiary effects of TVP1022 are correlated with corresponding alterations in the activation properties and conduction velocity, we measured extracellular electrograms from NRVM cultures by means of the MEA setup (Meiry et al., 2001; Zeevi-Levin et al., 2005). These experiments showed (Fig. 7) that only in the doxorubicin group, conduction velocity (P Ͻ 0.01), QRS amplitude (P Ͻ 0.001), and dV/dt max (P Ͻ 0.01) were significantly decreased at 48 h, compared with the 0-h time point. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Our recent studies demonstrated that propargylamine derivatives such as rasagiline (Azilect, Food and Drug Administration-approved anti-Parkinson drug) and its S-isomer TVP1022 protect cardiac and neuronal cell cultures against apoptotic-inducing stimuli. Studies on structure-activity relationship revealed that their neuroprotective effect is associated with the propargylamine moiety, which protects mitochondrial viability and prevents apoptosis by activating Bcl-2 and protein kinase C-epsilon and by down-regulating the proapoptotic protein Bax. Based on the established cytoprotective and neuroprotective efficacies of propargylamine derivatives, as well as on our recent study showing that TVP1022 attenuates serum starvation-induced and doxorubicin-induced apoptosis in neonatal rat ventricular myocytes (NRVMs), we tested the hypothesis that TVP1022 will also provide protection against doxorubicin-induced NRVM functional derangements. The present study demonstrates that pretreatment of NRVMs with TVP1022 (1 microM, 24 h) prevented doxorubicin (0.5 microM, 24 h)-induced elevation of diastolic [Ca(2+)](i), the slowing of [Ca(2+)](i) relaxation kinetics, and the decrease in the rates of myocyte contraction and relaxation. Furthermore, pretreatment with TVP1022 attenuated the doxorubicin-induced reduction in the protein expression of sarco/endoplasmic reticulum calcium (Ca(2+)) ATPase, Na(+)/Ca(2+) exchanger 1, and total connexin 43. Finally, TVP1022 diminished the inhibitory effect of doxorubicin on gap junctional intercellular coupling (measured by means of Lucifer yellow transfer) and on conduction velocity, the amplitude of the activation phase, and the maximal rate of activation (dv/dt(max)) measured by the Micro-Electrode-Array system. In summary, our results indicate that TVP1022 acts as a novel cardioprotective agent against anthracycline cardiotoxicity, and therefore potentially can be coadmhence, theinistered with doxorubicin in the treatment of malignancies in humans.
    Full-text · Article · Nov 2009 · Journal of Pharmacology and Experimental Therapeutics
  • Source
    • "Reduction of intercellular coupling under such circumstances might reduce this effect, however [24]. Direct evidence of changes in ion currents will be needed to clarify the interference of changes in excitability with the investigated relationship between Cx43 content and CV due to hypoxia in the study of Zeevi-Levin [7]. "

    Full-text · Article · May 2005 · Cardiovascular Research
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The effects of hypercholesterolemia on the myocardium per se include electrophysiological and mechanical alterations. Since gap junctions are essential in electromechanical coupling throughout the heart, we examined the correlation between the temporal expression of cardiac connexin 43 (Cx43), contractile function, and conduction velocity in cholesterol-fed rabbits. After a 12-week feeding period, serum cholesterol levels gradually increased (P<0.001). In contrast, expression of cardiomyocyte Cx43 protein progressively decreased (60% reduction at 12 weeks, P<0.001). Such a reduction was also demonstrated by immunoconfocal microscopy, which further showed redistribution of Cx43 gap junctions at the lateral cell membrane. The downregulation of Cx43 protein was associated with increased levels of Cx43 mRNA (3.5 -fold at 12 weeks, P<0.001) and phosphorylated c-Jun N-terminal kinase (three-fold at 12 weeks, P=0.001). Functionally, although fractional shortening of the left ventricle remained unchanged throughout the feeding protocol, the cholesterol-fed rabbits had a reduced cardiac cycle-dependent variation of integrated backscatters, a decreased mitral ring systolic velocity, and an increased modified Tei index (all P<0.001), all of which indicated impaired intrinsic myocardial contractility and attenuated ventricular systolic performance. In Langendorff-perfused hearts of cholesterol-fed rabbits, decreased conduction velocity was observed (P<0.005). Withdrawal of the cholesterol-enriched diet for 18 weeks restored the contractile parameters and Cx43 protein expression. These findings suggest that Cx43 is highly involved in the molecular mechanism of hypercholesterolemia-induced cardiac contractile dysfunction and dysrhythmias.
    Full-text · Article · Oct 2005 · Laboratory Investigation
Show more