Opposing roles of ERK, p38 MAP kinases in FGF2-induced astroglial process extension

ArticleinMolecular and Cellular Neuroscience 28(4):779-90 · May 2005with4 Reads
Impact Factor: 3.84 · DOI: 10.1016/j.mcn.2004.12.010 · Source: PubMed

    Abstract

    The stellate processes of astroglial cells undergo extensive remodeling in response to neural injury. Little is known about intracellular signaling mechanisms controlling process extension. We tested roles for the ERK and p38 MAP kinase pathways in a simplified culture model. FGF2-induced process extension was preceded by a strong and transient phosphorylation of ERK, and a modest activation of p38 MAP kinase, which exhibited significant basal activity. Phosphorylated ERK was found predominantly in the cytoplasm, whereas activated p38 MAP kinase was nuclear. Process extension was completely blocked by the specific MEK inhibitor U0126. Conversely, inhibition of the p38 MAP kinase pathway with SB202190 stimulated spontaneous process growth and greatly potentiated FGF2-induced process extension. The p38 inhibitor effect was reproduced with an adenovirus expressing dominant-negative p38 MAP kinase. Selective pharmacological blockade of MAP kinase pathways may enable modulation of the astroglial response to injury so as to promote neural regeneration.