Article

Alaminos M, Davalos V, Ropero S, Setien F, Paz MF, Herranz M et al.. EMP3, a myelin-related gene located in the critical 19q13.3 region, is epigenetically silenced and exhibits features of a candidate tumor suppressor in glioma and neuroblastoma. Cancer Res 65: 2565-2571

Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, New York, United States
Cancer Research (Impact Factor: 9.33). 05/2005; 65(7):2565-71. DOI: 10.1158/0008-5472.CAN-04-4283
Source: PubMed

ABSTRACT

The presence of common genomic deletions in the 19q13 chromosomal region in neuroblastomas and gliomas strongly suggests the presence of a putative tumor suppressor gene for these neoplasms in this region that, despite much effort, has not yet been identified. In an attempt to address this issue, we compared the expression profile of 89 neuroblastoma tumors with that of benign ganglioneuromas by microarray analysis. Probe sets (637 of 62,839) were significantly down-regulated in neuroblastoma tumors, including, most importantly, a gene located at 19q13.3: the epithelial membrane protein 3 (EMP3), a myelin-related gene involved in cell proliferation and cell-cell interactions. We found that EMP3 undergoes hypermethylation-mediated transcriptional silencing in neuroblastoma and glioma cancer cell lines, whereas the use of the demethylating agent 5-aza-2-deoxycytidine restores EMP3 gene expression. Furthermore, the reintroduction of EMP3 into neuroblastoma cell lines displaying methylation-dependent silencing of EMP3 induces tumor suppressor-like features, such as reduced colony formation density and tumor growth in nude mouse xenograft models. Screening a large collection of human primary neuroblastomas (n = 116) and gliomas (n = 41), we observed that EMP3 CpG island hypermethylation was present in 24% and 39% of these tumor types, respectively. Furthermore, the detection of EMP3 hypermethylation in neuroblastoma could be clinically relevant because it was associated with poor survival after the first 2 years of onset of the disease (Kaplan-Meier; P = 0.03) and death of disease (Kendall tau, P = 0.03; r = 0.19). Thus, EMP3 is a good candidate for being the long-sought tumor suppressor gene located at 19q13 in gliomas and neuroblastomas.

Download full-text

Full-text

Available from: Jaume Mora, Dec 27, 2015
  • Source
    • "Accumulated evidence suggested that EMP3 might be a tumor suppressor gene in glioma13141516, neuroblastoma[13,17], esophageal squamous cell carcinoma (ESCC) cell lines[20], and non-small cell lung cancer (NSCLC)[18]. Treating neuroblastoma cell lines with a demethylating agent, 5-aza-2-deoxycytidine, to restore EMP3 expression reduced colony formation density and tumor growth in nude mouse xenograft models[13]. Overexpression of EMP3 resulted in growth inhibition and TERT repression in ESCC cell lines[20]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Epithelial membrane protein-3 (EMP3), a typical member of the epithelial membrane protein (EMP) family, is epigenetically silenced in some cancer types, and has been proposed to be a tumor suppressor gene. However, its effects on tumor suppression are controversial and its roles in development and malignancy of hepatocellular carcinoma (HCC) remain unclear. In the present study, we found that EMP3 was highly expressed in the tumorous tissues comparing to the matched normal tissues, and negatively correlated with differentiated degree of HCC patients. Knockdown of EMP3 significantly reduced cell proliferation, arrested cell cycle at G1 phase, and inhibited the motility and invasiveness in accordance with the decreased expression and activity of urokinase plasminogen activator (uPA) and matrix metalloproteinase 9 (MMP-9) in HCC cells. The in vivo tumor growth of HCC was effectively suppressed by knockdown of EMP3 in a xenograft mouse model. The EMP3 knockdown-reduced cell proliferation and invasion were attenuated by inhibition of phosphatidylinositol 3-kinase (PI3K) or knockdown of Akt, and rescued by overexpression of Akt in HCC cells. Clinical positive correlations of EMP3 with p85 regulatory subunit of PI3K, p-Akt, uPA, as well as MMP-9 were observed in the tissue sections from HCC patients. Here, we elucidated the tumor progressive effects of EMP3 through PI3K/Akt pathway and uPA/MMP-9 cascade in HCC cells. The findings provided a new insight into EMP3, which might be a potential molecular target for diagnosis and treatment of HCC.
    Preview · Article · Oct 2015 · Oncotarget
  • Source
    • "Within tumors of the nervous system, DNA hypermethylation and aberrant expression of the EMP3 gene have been reported in both gliomas (24%) and neuroblastoma (39%) [5]. In the latter, the EMP3 hypermethylation may have a clinical relevance because it is associated with poor survival at two-year follow-up and with a higher mortality rate [5]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The epithelial membrane protein 3 (EMP3) is a candidate tumor suppressor gene in the critical region 19q13.3 for several solid tumors, including tumors of the nervous systems. The aim of this study was to investigate the EMP3 promoter hypermethylation status in a series of 229 astrocytic and oligodendroglial tumors and in 16 GBM cell lines. The analysis was performed by methylation-specific PCR and capillary electrophoresis. Furthermore, the EMP3 expression at protein level was evaluated by immunohistochemistry and Western blotting analysis. Associations of EMP3 hypermethylation with total 1p/19q codeletion, MGMT promoter hypermethylation, IDH1/IDH2 and TP53 mutations, and EGFR amplification were studied, as well as its prognostic significance. The EMP3 promoter hypermethylation has been found in 39.5% of gliomas. It prevailed in low-grade tumors, especially in gliomas with an oligodendroglial component, and in sGBMs upon pGBMs. In oligodendroglial tumors, it was strongly associated with both IDH1/IDH2 mutations and total 1p/19q codeletion and inversely with EGFR gene amplification. No association was found with MGMT hypermethylation and TP53 mutations. In the whole series, the EMP3 hypermethylation status correlated with 19q13.3 loss and lack of EMP3 expression at protein level. A favorable prognostic significance on overall survival of the EMP3 promoter hypermethylation was found in patients with oligodendroglial tumors.
    Full-text · Article · Sep 2013
  • Source
    • "Epithelial membrane protein 3 (EMP3) is a myelin-related gene associated with cell-cell interactions and cell proliferation. EMP3 promoter has been found hypermethylated and, so, silenced in primary gliomas and neuroblastoma, showing similar features than a tumor suppressor gene [26–29]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Gliomas are the most common type of primary brain tumor. Although tremendous progress has been achieved in the recent years in the diagnosis and treatment, its molecular etiology remains unknown. In this regard, epigenetics represents a new approach to study the mechanisms that control gene expression and function without changing the sequence of the genome. In the present paper we describe the main findings about the alterations of cell signaling pathways in the most aggressive glioma in the adult population, namely, glioblastoma, in which epigenetic mechanisms and the emerging role of cancer stem cell play a crucial function in the development of new biomarkers for its detection and prognosis and the corresponding development of new pharmacological strategies.
    Full-text · Article · Jul 2012
Show more