Bacterial 2-Component Signal Transduction Systems: A Fluorescence Polarization Screen for Response Regulator-Protein Binding

University of Wisconsin–Madison, Madison, Wisconsin, United States
Journal of Biomolecular Screening (Impact Factor: 2.42). 05/2005; 10(3):270-4. DOI: 10.1177/1087057104273930
Source: PubMed


Two-component signal transduction systems are the primary means by which bacteria sense environmental change and integrate an adaptive response. In pathogenic bacteria, 2-component signal transduction (TCST) kinases are involved in the expression of virulence and antibiotic resistance. This makes bacterial TCST systems attractive targets for pharmacologic intervention. This paper describes a fluorescence polarization assay that quantifies the binding between bacterial DNA promoter segments and their cognate response regulator proteins. Using the Van RSTCST system from Enterococcus faecium, which encodes vancomycin resistance, the authors demonstrate inhibition of response regulator protein/promoter segment binding with a known inhibitor. Observed binding constants were comparable to those reported in surface plasmon resonance measurements and gel shift measurements.

Download full-text


Available from: Andrew T Ulijasz, Jul 04, 2014
  • Source
    • "[50]. A fluorescence polarization assay has been described for binding of component 2 to its cognate DNA sequence [53]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), infects approximately 2 billion people worldwide and is the leading cause of mortality due to infectious disease. Current TB therapy involves a regimen of four antibiotics taken over a six month period. Patient compliance, cost of drugs and increasing incidence of drug resistant M. tuberculosis strains have added urgency to the development of novel TB therapies. Eradication of TB is affected by the ability of the bacterium to survive up to decades in a dormant state primarily in hypoxic granulomas in the lung and to cause recurrent infections. The availability of M. tuberculosis genome-wide DNA microarrays has lead to the publication of several gene expression studies under simulated dormancy conditions. However, no single model best replicates the conditions of human pathogenicity. In order to identify novel TB drug targets, we performed a meta-analysis of multiple published datasets from gene expression DNA microarray experiments that modeled infection leading to and including the dormant state, along with data from genome-wide insertional mutagenesis that examined gene essentiality. Based on the analysis of these data sets following normalization, several genome wide trends were identified and used to guide the selection of targets for therapeutic development. The trends included the significant up-regulation of genes controlled by devR, down-regulation of protein and ATP synthesis, and the adaptation of two-carbon metabolism to the hypoxic and nutrient limited environment of the granuloma. Promising targets for drug discovery were several regulatory elements (devR/devS, relA, mprAB), enzymes involved in redox balance and respiration, sulfur transport and fixation, pantothenate, isoprene, and NAD biosynthesis. The advantages and liabilities of each target are discussed in the context of enzymology, bacterial pathways, target tractability, and drug development. Based on our bioinformatics analysis and additional discussion of in-depth biological rationale, several novel anti-TB targets have been proposed as potential opportunities to improve present therapeutic treatments for this disease.
    Full-text · Article · Feb 2007 · BMC Infectious Diseases
  • [Show abstract] [Hide abstract]
    ABSTRACT: Histidine kinases are ubiquitous molecular sensors that are used by bacteria to detect and respond to a myriad of environmental signals. They are attractive antimicrobial targets because of their roles in mediating the virulence of pathogenic organisms, as well as the ability of bacteria to resist host defenses and develop resistance to antibiotics. In this review, we discuss the challenges involved in developing specific inhibitors of this highly diverse group of kinases.
    No preview · Article · Dec 2007 · Mini Reviews in Medicinal Chemistry
  • [Show abstract] [Hide abstract]
    ABSTRACT: Infections caused by multidrug-resistant bacteria are a considerable and increasing global problem. The development of new antibiotics is not keeping pace with the rapid evolution of resistance to almost all clinically available drugs, and novel strategies are required to fight bacterial infections. One such strategy is the control of pathogenic behaviors, as opposed to simply killing bacteria. Bacterial two-component system (TCS) signal transduction pathways control many pathogenic bacterial behaviors, such as virulence, biofilm formation and antibiotic resistance and are, therefore, an attractive target for the development of new drugs. This review presents an overview of TCS that are potential targets for such a strategy, describes small-molecules inhibitors of TCS identified to date and discusses assays for the identification of novel inhibitors. The future perspective for the identification and use of inhibitors of TCS to potentially provide new therapeutic options for the treatment of drug-resistant bacterial infections is discussed.
    No preview · Article · Jul 2013 · Future medicinal chemistry