Ward KA, Roberts SA, Adams JE, Mughal MZ. Bone geometry and density in the skeleton of pre-pubertal gymnasts and school children. Bone 36, 1012-1018

The University of Manchester, Manchester, England, United Kingdom
Bone (Impact Factor: 3.97). 07/2005; 36(6):1012-8. DOI: 10.1016/j.bone.2005.03.001
Source: PubMed


We have studied the differences between the peripheral and axial skeleton of pre-pubertal gymnasts and controls. We hypothesised that compared to controls, gymnasts would have larger and stronger radius and tibia diaphyses with greater bone mineral content and larger cross-sectional muscle area. At the distal metaphyseal sites of the radius and tibia, gymnasts would have greater bone cross-sectional area and total and trabecular volumetric bone mineral density (vBMD). Differences between the lumbar spine, total body and body composition in gymnasts versus controls were also studied. Peripheral quantitative computed tomography (pQCT) was used to measure bone geometry, density and muscle of the peripheral skeleton; dual energy X-ray absorptiometry (DXA) for total body and axial measurements. Eighty-six pre-pubertal children, 44 gymnasts (mean age 9.0 years, range 5.4-11.9 years) and 42 controls (mean age 8.8 years, range 5.6-11.9 years) were studied. Eighty-four children were Caucasian, one child was mixed race, one Chinese. Data were adjusted for age, sex and height. Differences in the effect size between sexes were also tested. At the 50% radius diaphysis gymnasts had larger bones (9.2%, p = 0.0054) with greater cortical area (8.2%, p = 0.022) and stress strain index (surrogate measure of bone strength) than controls (13.6%, p = 0.015). The effect size was different between males and females for cortical thickness (p = 0.03). At the 65% tibia diaphysis, gymnasts had greater cortical area (5.3%, p = 0.057) and thickness (6.2%, p = 0.068) than controls; consequently, bone strength was 5.4% higher (p = 0.14). There were no significant differences in cortical volumetric bone mineral density (vBMD) at the radius or tibia diaphysis between the groups. There was a difference in effect size for tibia muscle cross-sectional area between the sexes (p = 0.035). At the distal radius and tibia total and trabecular vBMD was greater (Total: radius 17%, p < 0.0001, tibia: 5.7%, p = 0.0053; trabecular: radius 21%, p < 0.0001, tibia 4.5%, p = 0.11). Bone size was not different in gymnasts compared to controls Lumbar spine BMC (12.3%, p = 0.0007), areal bone mineral density (aBMD) (9.1%, p = 0.0006) and bone mineral apparent density (BMAD) (7.6%, p = 0.0047) were greater in gymnasts but vertebral size was not significantly different. Likewise, total body BMD (3.5%, p = 0.0057) and BMC (4.78%, p = 0.085) were greater in gymnasts but there were no differences in skeletal size. These data suggest site-specific differences in how the pre-pubertal skeleton develops in response to the repetitive loading it experiences when participating in regular gymnastics. At diaphyseal sites these differences are predominantly in the bone and muscle geometry and not density. Conversely, at trabecular sites, the differences are increased density rather than geometry. In conclusion, the present study has demonstrated skeletal differences between gymnasts and controls. These differences appear to be site and sex specific.

Download full-text


Available from: Kate A Ward, Feb 22, 2015
  • Source
    • "Muscle mass provides an excellent index of the mechanical stimulation to bone and is highly correlated to bone mass, density, and architecture (Wetzsteon et al. 2011). Multiple studies in healthy children have shown an association between physical activity and aBMD,[414253–55] and athletes, such as gymnasts[56] and tennis players,[57] have increased bone density, dimensions, and strength during growth. Moreover, modest increases in weight-bearing physical activity can result in significant improvements in bone density and strength in growing children and adolescents.[58] "
    [Show abstract] [Hide abstract]
    ABSTRACT: During normal childhood and adolescence, the skeleton undergoes tremendous change. Utilizing the processes of modeling and remodeling, the skeleton acquires its adult configuration and ultimately achieves peak bone mass. Optimization of peak bone mass requires the proper interaction of environmental, dietary, hormonal, and genetic influences. A variety of acute and chronic conditions, as well as genetic polymorphisms, are associated with reduced bone density, which can lead to an increased risk of fracture both in childhood and later during adulthood. Bone densitometry has an established role in the evaluation of adults with bone disorders, and the development of suitable reference ranges for children now permits the application of this technology to younger individuals. We present a brief overview of the factors that determine bone density and the emerging role of bone densitometry in the assessment of bone mass in growing children and adolescents.
    Full-text · Article · Dec 2012
  • Source
    • "Alternatively, bone mineral may be deposited on the endosteal surface, producing a thicker cortical shell without a wider bone. (Duncan et al., 2002, Greene et al., 2005, Ward et al., 2005). "
    [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this retrospective study was to determine the long-term effect of exercise on bone mineral density (BMD), bone mineral content (BMC) and body composition (BC) in post-menopausal women who were elite athletes during their youth compared with sedentary controls. It is a retrospective study and carried out in an outpatient clinic. A total of 48 post-menopausal women (54-73 years of age) were enrolled. Ex-elite athletes with long-term (>20 years) histories of significant training and performance were divided into two groups: weight-bearing sports (runners, n=12) and non-weight-bearing sports (swimmers, n=12). The athletes were age matched with sedentary controls (n=24). BMD, BMC and BC were measured using dual-energy X-ray absorptiometry. Healthcare and sport activity histories were evaluated using a questionnaire. No significant differences were found with regard to body weight, height, body mass index and hours of activity between the two groups of athletes. There were no significant differences in activity levels between athletes and controls at the time of this study. BMD and BMC were not significantly different between athletes; they were significantly higher in athletes than in controls (P<0.001). Although the ex-athletes did not significantly differ in BC, left and right lean arm mass and arm BMD were significantly higher in swimmers than in runners (P<0.0001). The high level of physical activity observed in female athletes is associated with improved muscle mass, BMD and BMC, and physical activity during youth seems to have a beneficial effect on bone mass and helps to prevent bone loss due to aging.
    Full-text · Article · Jun 2011 · European journal of clinical nutrition
  • Source
    • "Besides BMD measurement, we have conducted strength–strain indices with respect to Y axis (SSIy) to assess the difference in mechanical property of OVX + IBAN + PTH group which showed the similar BMD values to the OVX + IBAN group [37]. The SSI is related to both geometrical properties and cortical density [38] [39]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Osteoporosis remains a challenging problem. Understanding the regulation on osteoclast and osteoblast by drugs has been of great interest. Both anabolic and anti-resorptive drugs yield positive results in the treatment of osteoporosis. However, whether the concurrent administration of parathyroid hormone (1-34) and ibandronate may offer an advantage over monotherapy is still unknown. This study, therefore, attempts to compare the efficacy of two therapeutical approaches and to investigate the beneficial effects in concurrent therapy in a rat model using three-point bending, pQCT and μCT analysis. A total of 60 female Sprague-Dawley rats of age 10 to 12 weeks were divided into 5 groups (SHAM, OVX+VEH, OVX+PTH, OVX+IBAN, OVX+PTH+IBAN) and subjected to ovariectomy or sham surgery accordingly. Low-dose parathyroid hormone (PTH) and/or ibandronate or its vehicle were administered subcutaneously to the respective groups starting from 4th week post-surgery at weekly intervals. Three rats from each group were euthanized every 2 weeks and their tibiae were harvested. The tibiae were subjected to metaphyseal three-point bending, pQCT and μCT analysis. Serum biomarkers for both bone formation (P1NP) and resorption (CTX) were studied. A total of 11 indices showed a significant difference between SHAM and OVX+VEH groups, suggesting the successful establishment of osteoporosis in the rat model. Compared to the previous studies which showed impedance from bisphosphonates in combination therapy with PTH, our study revealed that ibandronate does not block the anabolic effects of PTH in ovariectomized rat tibiae. Maximum load, strength-strain indices and serum bone formation markers of OVX+PTH+IBAN group are significantly higher than both monotherapy groups. With the proper ratio of anabolic and anti-resorptive drugs, the effect could be more pronounced.
    Full-text · Article · Feb 2011 · Bone
Show more