Astrocytes protect neurons from ethanol-induced oxidative stress and apoptotic death. J Neurosci Res

University of Texas at San Antonio, San Antonio, Texas, United States
Journal of Neuroscience Research (Impact Factor: 2.59). 06/2005; 80(5):655-66. DOI: 10.1002/jnr.20502
Source: PubMed


Ethanol induces oxidative stress in cultured fetal rat cortical neurons and this is followed by apoptotic death, which can be prevented by normalization of cell content of reduced glutathione (GSH). Because astrocytes can play a central role in maintenance of neuron GSH homeostasis, the following experiments utilized cocultures of neonatal rat cortical astrocytes and fetal cortical neurons to determine if astrocytes could protect neurons from ethanol-mediated apoptotic death via this mechanism. In cortical neurons cultured in the absence of astrocytes, ethanol (2.5 and 4 mg/ml; 6-, 12-, and 24-hr exposures) decreased trypan blue exclusion and the MTT viability measures by up to 45% (P < 0.05), increased levels of reactive oxygen species (ROS) by up to 81% (P < 0.05), and decreased GSH within 1 hr of treatment by 49 and 51% for 2.5 and 4 mg/ml, respectively (P < 0.05). This was followed by onset of apoptotic cell death as determined by increased Annexin V binding and DNA fragmentation by 12 hr of ethanol exposure. Coculturing neurons with astrocytes prevented GSH depletion by 2.5 mg/ml ethanol, whereas GSH content was increased over controls in neurons exposed to 4 mg/ml ethanol (by up to 341%; P < 0.05). Ethanol generated increases in neuron ROS and apoptosis; decreases in viability were also prevented by coculture. Astrocytes were largely insensitive to ethanol, using the same measures. Only exposure to 4.0 mg/ml ethanol decreased GSH content in astrocytes, concomitant with a 204% increase in GSH efflux (P < 0.05). These studies illustrate that astrocytes can protect neurons from ethanol-mediated apoptotic death and that this may be related to maintenance of neuron GSH.

Download full-text


Available from: Lora Talley Watts, Feb 17, 2015
  • Source
    • "Moreover, our study demonstrated that alcohol reduced astrocyte population that was contradictory to other studies that inferred that alcohol increased astrocytes cells linked to increase production of reactive oxygen species (ROS) and calcium releasing in mitochondria of these cells [18], [19], [56]. In this sense, astrocytes protect against oxidative stress induced by alcohol perhaps by antioxidant factors production, such as glutathione peroxidase [57]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Binge drinking is common among adolescents, and this type of ethanol exposure may lead to long-term nervous system damage. In the current study, we evaluated motor performance and tissue alterations in the cerebral cortex of rats subjected to intermittent intoxication with ethanol from adolescence to adulthood. Adolescent male Wistar rats (35 days old) were treated with distilled water or ethanol (6.5 g/kg/day, 22.5% w/v) during 55 days by gavage to complete 90 days of age. The open field, inclined plane and the rotarod tests were used to assess the spontaneous locomotor activity and motor coordination performance in adult animals. Following completion of behavioral tests, half of animals were submitted to immunohistochemical evaluation of NeuN (marker of neuronal bodies), GFAP (a marker of astrocytes) and Iba1 (microglia marker) in the cerebral cortex while the other half of the animals were subjected to analysis of oxidative stress markers by biochemical assays. Chronic ethanol intoxication in rats from adolescence to adulthood induced significant motor deficits including impaired spontaneous locomotion, coordination and muscle strength. These behavioral impairments were accompanied by marked changes in all cellular populations evaluated as well as increased levels of nitrite and lipid peroxidation in the cerebral cortex. These findings indicate that continuous ethanol intoxication from adolescence to adulthood is able to provide neurobehavioral and neurodegenerative damage to cerebral cortex.
    Full-text · Article · Jun 2014 · PLoS ONE
  • Source
    • "In particular, oxidative stress in the CNS occurs after ischemic, traumatic, or excitotoxic insults when the excessive generation of ROS overwhelms the intracellular antioxidant capacity [1]. Neurons are highly sensitive to oxidative damage, whereas astrocytes exert a protective function acting as cell scavengers and producing neurotrophic factors in response to ROS [2] [3] [4] [5] [6]. Astrocytes respond to ROS with the activation of MAP kinases (MAPKs), including the extracellular signal-regulated kinases ERK1/2, JUN kinases (JNKs), and p38 MAPKs [7] [8]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Addition of hydrogen peroxide to cultured astrocytes induced a rapid and transient increase in the expression of Ha-Ras and Ki-Ras. Pull-down experiments with the GTP-Ras-binding domain of Raf-1 showed that oxidative stress substantially increased the activation of Ha-Ras, whereas a putative farnesylated activated form of Ki-Ras was only slightly increased. The increase in both Ha-Ras and Ki-Ras was insensitive to the protein synthesis inhibitor, cycloheximide, and was occluded by the proteasomal inhibitor, MG-132. In addition, exposure to hydrogen peroxide reduced the levels of ubiquitinated Ras protein, indicating that oxidative stress leads to a reduced degradation of both isoforms through the ubiquitin/proteasome pathway. Indeed, the late reduction in Ha-Ras and Ki-Ras was due to a recovery of proteasomal degradation because it was sensitive to MG-132. The late reduction of Ha-Ras levels was abrogated by compound PD98059, which inhibits the MAP kinase pathway, whereas the late reduction of Ki-Ras was unaffected by PD98059. We conclude that oxidative stress differentially regulates the expression of Ha-Ras and Ki-Ras in cultured astrocytes, and that activation of the MAP kinase pathway by oxidative stress itself or by additional factors may act as a fail-safe mechanism limiting a sustained expression of the potentially detrimental Ha-Ras.
    Full-text · Article · Oct 2012 · Oxidative Medicine and Cellular Longevity
  • Source
    • "Nevertheless, several studies suggest that reactive astrocytes may also contribute to the defense of neurons against oxidative stress [27]–[29]. In particular, it is now established that astrocytes contain high levels of reactive oxygen species (ROS) scavenger molecules and antioxidant enzymes, which are not only involved in the protection of astroglial cells against the deleterious effects of ROS [30] but may also play a critical role for neuron survival [31]–[33]. Little was known however about the endogenous factors that contributed to astroglial cell survival. In this context, we have recently shown that, in cultured astrocytes, ODN exerts a protective effect upon the deleterious action of hydrogen peroxide (H2O2), which is responsible for cell death, by attenuating H2O2-induced ROS accumulation [34]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Astrocytes synthesize and release endozepines, a family of regulatory peptides, including the octadecaneuropeptide (ODN) an endogenous ligand of both central-type benzodiazepine (CBR) and metabotropic receptors. We have recently shown that ODN exerts a protective effect against hydrogen peroxide (H(2)O(2))-induced oxidative stress in astrocytes. The purpose of the present study was to determine the type of receptor and the transduction pathways involved in the protective effect of ODN in cultured rat astrocytes. We have first observed a protective activity of ODN at very low concentrations that was abrogated by the metabotropic ODN receptor antagonist cyclo(1-8)[DLeu(5)]OP, but not by the CBR antagonist flumazenil. We have also found that the metabotropic ODN receptor is positively coupled to adenylyl cyclase in astrocytes and that the glioprotective action of ODN upon H(2)O(2)-induced astrocyte death is PKA- and MEK-dependent, but PLC/PKC-independent. Downstream of PKA, ODN induced ERK phosphorylation, which in turn activated the expression of the anti-apoptotic gene Bcl-2 and blocked the stimulation by H(2)O(2) of the pro-apoptotic gene Bax. The effect of ODN on the Bax/Bcl-2 balance contributed to abolish the deleterious action of H(2)O(2) on mitochondrial membrane integrity and caspase-3 activation. Finally, the inhibitory effect of ODN on caspase-3 activity was shown to be PKA and MEK-dependent. In conclusion, the present results demonstrate that the potent glioprotective action of ODN against oxidative stress involves the metabotropic ODN receptor coupled to the PKA/ERK-kinase pathway to inhibit caspase-3 activation.
    Full-text · Article · Aug 2012 · PLoS ONE
Show more