PU.1 protein expression has a positive linear association with protein expression of germinal centre B cell genes including BCL-6, CD10, CD20 and CD22: Identification of PU.1 putative binding sites in the BCL-6 promotor

Department of Pathology, The Norwegian Radium Hospital, University of Oslo, Oslo, Norway.
The Journal of Pathology (Impact Factor: 7.43). 07/2005; 206(3):312-9. DOI: 10.1002/path.1777
Source: PubMed


The transcription factor PU.1 has been shown to be crucial for the early stages of B cell development but its function at later stages of B cell development is less well known. We observed previously that PU.1 is expressed uniformly throughout the mature pre-plasma cell B cell population, the only exception being a subpopulation of germinal centre (GC) cells which showed exceptionally high expression of PU.1. This suggested that PU.1 may also have a role in GC B cell biology. To test this hypothesis and to screen for possible genes regulated by PU.1, we first evaluated semi-quantitatively the possible co-expression of PU.1 with proteins known to be upregulated or downregulated during GC B cell development. Normal lymphoid tissues and 255 B cell non-Hodgkin lymphomas of putative GC B cell origin were evaluated. PU.1 expression was positively associated with CD10 (p < 0.0001), CD20 (p = 0.043), CD22 (p = 0.005), CD79a (p = 0.024) and Bcl-6 (p < 0.0001) and negatively associated with cytoplasmic immunoglobulin light-chain expression (p = 0.036) in diffuse large B cell lymphoma. Identical or nearly identical associations were found in follicular lymphoma. Since CD20 is known to be partly regulated by PU.1 and putative PU.1-binding sites have been described in the regulatory regions of the CD22, CD79a and CD10 genes, we looked for putative PU.1 binding sites in the BCL6 promotor. Four such putative PU.1 binding sites were identified. Further analysis by gel-shift electromobility essay showed that PU.1 protein binds to three of the four putative binding sites in the BCL6 promotor. PU.1 and Bcl-6 were also found to be upregulated in centroblasts in the normal GC, but jointly downregulated in a subpopulation of centrocytes. Our findings support the contention that PU.1 may also have an important role in GC B cell development.

1 Follower
41 Reads
Show more