Effect of Cochlear Implantation on Residual Spiral Ganglion Cell Count as Determined by Comparison with the Contralateral Nonimplanted Inner Ear in Humans

ArticleinThe Annals of otology, rhinology, and laryngology 114(5):381-5 · June 2005with14 Reads
Impact Factor: 1.09 · DOI: 10.1177/000348940511400508 · Source: PubMed


    It is generally assumed that at least a minimal number of spiral ganglion cells is essential for successful speech perception with a cochlear implant. Although the insertion of a multichannel cochlear implant frequently results in loss of residual hearing in the implanted ear, this outcome does not imply that significant damage to residual populations of spiral ganglion cells has occurred. The purpose of the current study was to compare spiral ganglion cell counts in implanted and nonimplanted cochleas in 11 patients for whom both temporal bones were available and in whom a multichannel cochlear implant had been placed unilaterally. The temporal bones were processed for light microscopy by standard techniques. The cochleas were reconstructed by 2-dimensional methods. Spiral ganglion cell counts of the implanted and nonimplanted sides were compared by a paired t-test (2-tailed). The mean spiral ganglion cell counts for implanted and nonimplanted ears were not statistically different in the most basal three segments of the cochlea. However, the mean spiral ganglion cell count in segment 4 (apical segment) and the mean total spiral ganglion cell count were lower in the implanted cochleas than in the nonimplanted cochleas (p < .01). The results of this study suggest a modest decrease in the total spiral ganglion cell count in the implanted ears as compared to the nonimplanted ears, principally in the apical segment. Possible interpretations of this finding are discussed.