Oogenesis in Adult Mammals, Including Humans: A Review

ArticleinEndocrine 26(3):301-16 · May 2005with150 Reads
DOI: 10.1385/ENDO:26:3:301 · Source: PubMed
The origin of oocytes and primary follicles in ovaries of adult mammalian females has been a matter of dispute for over 100 yr. The prevailing belief that all oocytes in adult mammalian females must persist from the fetal period of life seems to be a uniquely retrogressive reproductive mechanism requiring humans to preserve their gametes from the fetal period for several decades. The utilization of modern techniques during last 10 yr clearly demonstrates that mammalian primordial germ cells originate from somatic cell precursors. This indicates that if somatic cells are precursors of germ cells, then somatic mutations can be passed on to progeny. Mitotically active germline stem cells have been described earlier in ovaries of adult prosimian primates and recently have been reported to also be present in the ovaries of adult mice. We have earlier shown that in adult human females, mesenchymal cells in the ovarian tunica albuginea undergo a mesenchymal-epithelial transition into ovarian surface epithelium cells, which differentiate sequentially into primitive granulosa and germ cells. Recently, we have reported that these structures assemble in the deeper ovarian cortex and form new follicles to replace earlier primary follicles undergoing atresia (follicular renewal). Our current observations also indicate that follicular renewal exists in rat ovaries, and human oocytes can differentiate from ovarian surface epithelium in fetal ovaries in vivo and from adult ovaries in vitro. These reports challenge the established dogma regarding the fetal origin of eggs and primary follicles in adult mammalian ovaries. Our data indicate that the pool of primary follicles in adult human ovaries does not represent a static but a dynamic population of differentiating and regressing structures. Yet, the follicular renewal may cease at a certain age, and this may predetermine the onset of the natural menopause or premature ovarian failure. A lack of follicular renewal in aging ovaries may cause an accumulation of spontaneously arising or environmentally induced genetic alterations of oocytes, and that may be why aging females have a much higher chance of having oocytes with more mutations in persisting primary follicles.
    • "Parte et al. (2014) has reported germ cell nest formation, cyclosis and Balbiani formation during spontaneous differentiation of OSCs in vitro into oocyte-like structures. It has been suggested in literature that the epithelial cells in the OSE undergo epithelial–mesenchymal transition to differentiate into granulosa cells that surround the differentiating oocyte, resulting in PF assembly (Bukovsky et al., 2005; Bukovsky, 2011). The process of oogenesis and PF assembly occurs in a very subtle manner in the normal ovary as a result of direct FSH action on the stem cells located among the OSE cells and is further augmented when the mice are treated with PMSG (Bhartiya et al., 2012c). "
    [Show abstract] [Hide abstract] ABSTRACT: Background: Both pluripotent very small embryonic-like stem cells (VSELs) and induced pluripotent stem (iPS) cells were reported in 2006. In 2012, a Nobel Prize was awarded for iPS technology whereas even today the very existence of VSELs is not well accepted. The underlying reason is that VSELs exist in low numbers, remain dormant under homeostatic conditions, are very small in size and do not pellet down at 250-280g. The VSELs maintain life-long tissue homeostasis, serve as a backup pool for adult stem cells and are mobilized under stress conditions. An imbalance in VSELs function (uncontrolled proliferation) may result in cancer. Search methods: The electronic database 'Medline/Pubmed' was systematically searched with the subject heading term 'very small embryonic-like stem cells'. Objective and rationale: The most primitive stem cells that undergo asymmetric cell divisions to self-renew and give rise to progenitors still remain elusive in the hematopoietic system and testes, while the presence of stem cells in ovary is still being debated. We propose to review the available literature on VSELs, the methods of their isolation and characterization, their ontogeny, how they compare with embryonic stem (ES) cells, primordial germ cells (PGCs) and iPS cells, and their role in maintaining tissue homeostasis. The review includes a look ahead on how VSELs will result in paradigm shifts in basic reproductive biology. Outcomes: Adult tissue-specific stem cells including hematopoietic, spermatogonial, ovarian and mesenchymal stem cells have good proliferation potential and are indeed committed progenitors (with cytoplasmic OCT-4), which arise by asymmetric cell divisions of pluripotent VSELs (with nuclear OCT-4). VSELs are the most primitive stem cells and postulated to be an overlapping population with the PGCs. Rather than migrating only to the gonads, PGCs migrate and survive in various adult body organs throughout life as VSELs. VSELs express both pluripotent and PGC-specific markers and are epigenetically and developmentally more mature compared with ES cells obtained from the inner cell mass of a blastocyst-stage embryo. As a result, VSELs readily differentiate into three embryonic germ layers and spontaneously give rise to both sperm and oocytes in vitro. Like PGCs, VSELs do not divide readily in culture, nor produce teratoma or integrate in the developing embryo. But this property of being relatively quiescent allows endogenous VSELs to survive various kinds of toxic insults. VSELs that survive oncotherapy can be targeted to induce endogenous regeneration of non-functional gonads. Transplanting healthy niche (mesenchymal) cells have resulted in improved gonadal function and live births. Wider implications: Being quiescent, VSELs possibly do not accumulate genomic (nuclear or mitochondrial) mutations and thus may be ideal endogenous, pluripotent stem cell candidates for regenerative and reproductive medicine. The presence of VSELs in adult gonads and the fact that they survive oncotherapy may obviate the need to bank gonadal tissue for fertility preservation prior to oncotherapy. VSELs and their ability to undergo spermatogenesis/neo-oogenesis in the presence of a healthy niche will help identify newer strategies toward fertility restoration in cancer survivors, delaying menopause and also enabling aged mothers to have better quality eggs.
    Full-text · Article · Sep 2016
    • "A notable number of genes were associated with immune cells (e.g. monocytes, lymphocytes) that may influence the differentiation and maturation of germ and granulosa cells (Bukovsky et al., 1995Bukovsky et al., , 2005 Koks et al., 2010). These findings are also consistent Copy number variation in premature ovarian failure with other studies that implicate humoral and cellular autoimmune mechanisms in the etiology of POF (Hoek et al., 1997; Chernyshov et al., 2001 ). "
    [Show abstract] [Hide abstract] ABSTRACT: STUDY QUESTION Can spontaneous premature ovarian failure (POF) patients derived from population-based biobanks reveal the association between copy number variations (CNVs) and POF? SUMMARY ANSWER CNVs can hamper the functional capacity of ovaries by disrupting key genes and pathways essential for proper ovarian function. WHAT IS KNOWN ALREADY POF is defined as the cessation of ovarian function before the age of 40 years. POF is a major reason for female infertility, although its cause remains largely unknown. STUDY DESIGN, SIZE, DURATION The current retrospective CNV study included 301 spontaneous POF patients and 3188 control individuals registered between 2003 and 2014 at Estonian Genome Center at the University of Tartu (EGCUT) biobank. PARTICIPANTS/MATERIALS, SETTING, METHODS DNA samples from 301 spontaneous POF patients were genotyped by Illumina HumanCoreExome (258 samples) and HumanOmniExpress (43 samples) BeadChip arrays. Genotype and phenotype information was drawn from the EGCUT for the 3188 control population samples, previously genotyped with HumanCNV370 and HumanOmniExpress BeadChip arrays. All identified CNVs were subjected to functional enrichment studies for highlighting the POF pathogenesis. Real-time quantitative PCR was used to validate a subset of CNVs. Whole-exome sequencing was performed on six patients carrying hemizygous deletions that encompass genes essential for meiosis or folliculogenesis. MAIN RESULTS AND THE ROLE OF CHANCE Eleven novel microdeletions and microduplications that encompass genes relevant to POF were identified. For example, FMN2 (1q43) and SGOL2 (2q33.1) are essential for meiotic progression, while TBP (6q27), SCARB1 (12q24.31), BNC1 (15q25) and ARFGAP3 (22q13.2) are involved in follicular growth and oocyte maturation. The importance of recently discovered hemizygous microdeletions of meiotic genes SYCE1 (10q26.3) and CPEB1 (15q25.2) in POF patients was also corroborated. LIMITATIONS, REASONS FOR CAUTION This is a descriptive analysis and no functional studies were performed. Anamnestic data obtained from population-based biobank lacked clinical, biological (hormone levels) or ultrasonographical data, and spontaneous POF was predicted retrospectively by excluding known extraovarian causes for premature menopause. WIDER IMPLICATIONS OF THE FINDINGS The present study, with high number of spontaneous POF cases, provides novel data on associations between the genomic aberrations and premature menopause of ovarian cause and demonstrates that population-based biobanks are powerful source of biological samples and clinical data to reveal novel genetic lesions associated with human reproductive health and disease, including POF. STUDY FUNDING/COMPETING INTEREST This study was supported by the Estonian Ministry of Education and Research (IUT20-43, IUT20-60, IUT34-16, SF0180027s10 and 9205), Enterprise Estonia (EU30020 and EU48695), Eureka's EUROSTARS programme (NOTED, EU41564), grants from European Union's FP7 Marie Curie Industry-Academia Partnerships and Pathways (IAPP, SARM, |EU324509) and Horizon 2020 innovation programme (WIDENLIFE, 692065), Academy of Finland and the Sigrid Juselius Foundation.
    Full-text · Article · Jun 2016
    • "They contain also other cell types accompanying OSCs and adjacent TA, since the cellular content is scrapped from the ovarian surface as indicated previ- ously [10] . The following cell types detected immunohis- tochemically [10,232425 may, or may not be present: OSC-CK+ fibroblast-like precursors, OSCs, germ cells from asymmetric division of OSCs, germ cells in chromosomal crossover, germ cells in meiosis I division, post-meiosis I migrating germ cells, fibroblasts, Thy-1+ vascular pericytes, CD14 and DR+ MDCs, CD8 and DR + T cells, endothelial cells, and possibly other cell types. Unfortunately, the former clinical trial in 2006, accompanied by IVM, was unsuccessful due to the absence of properly differentiated OLCs which attract spermatozoa to be fertilized -reported in Ref. [26], although a single preblastocyst like structure was found after in vitro insem- ination [44] . "
    [Show abstract] [Hide abstract] ABSTRACT: In vitro maturation (IVM) and in vitro fertilization (IVF) technologies are facing with growing demands of older women to conceive. Although ovarian stem cells (OSCs) of older women are capable of producing in vitro fresh oocyte-like cells (OLCs), such cells cannot respond to IVM and IVF due to the lack of granulosa cells required for their maturation. Follicular renewal is also dependent on support of circulating blood mononuclear cells. They induce intermediary stages of meiosis (metaphase I chromosomal duplication and crossover, anaphase, telophase, and cytokinesis) in newly emerging ovarian germ cells, as for the first time demonstrated here, induce formation of granulosa cells, and stimulate follicular growth and development. A pretreatment of OSC culture with mononuclear cells collected from blood of a young healthy fertile woman may cause differentiation of bipotential OSCs into both developing germ and granulosa cells. A small blood volume replacement may enable treatment of ovarian infertility in vivo. The transferred mononuclear cells may temporarily rejuvenate virtually all tissues, including improvement of the function of endocrine tissues. Formation of new follicles and their development may be sufficient for IVM and IVF. The novel proposed in vitro approaches may be used as a second possibility. Infertility of human males affects almost a half of the infertility cases worldwide. Small blood volume replacement from young healthy fertile men may also be easy approach for the improvement of sperm quality in older or other affected men. In addition, body rejuvenation by small blood volume replacement from young healthy individuals of the same sex could represent a decline of in vitro methodology in favor of in vivo treatment for human functional diseases. Here we propose for the first time that blood mononuclear cells are essential for rejuvenation of those tissues, where immune system components participate in an appropriate division and differentiation of tissue stem cells. If needed, small blood volume replacement from distinct young healthy individuals could be utilized in six month intervals for repair of young altered or aged reproductive and other tissue functions. Systemic and local use of honey bee propolis tincture is an alternative option for functional rejuvenation of some tissues. Electronic supplementary material The online version of this article (doi:10.1186/s12958-015-0001-8) contains supplementary material, which is available to authorized users.
    Full-text · Article · Dec 2015
Show more