Article

Ecology: On the regulation of populations of mammals, birds, fish, and insects

University of Canberra, Canberra, Australian Capital Territory, Australia
Science (Impact Factor: 33.61). 08/2005; 309(5734):607-10. DOI: 10.1126/science.1110760
Source: PubMed

ABSTRACT

A key unresolved question in population ecology concerns the relationship between a population's size and its growth rate. We estimated this relationship for 1780 time series of mammals, birds, fish, and insects. We found that rates of population growth are high at low population densities but, contrary to previous predictions, decline rapidly with increasing population size and then flatten out, for all four taxa. This produces a strongly concave relationship between a population's growth rate and its size. These findings have fundamental implications for our understanding of animals' lives, suggesting in particular that many animals in these taxa will be found living at densities above the carrying capacity of their environments.

Full-text

Available from: Jim Hone
  • Source
    • "Large numbers of An. farauti are believed to be associated with large, permanent, brackish water lagoons or swamps that form behind sandbars that block the flow of water into the sea171819 as high adult biting densities and malaria parasite rates are associated with villages proximal to these coastal habitats [20, 21]. The population dynamics of mosquitoes are influenced by both intrinsic and exogenous processes22232425 . If density effects operate on mosquito larvae in large larval habitats , the impact of interventions targeting anopheline larval abundance will be disproportionate to the density of the anopheline populations' (linear reductions in populations may not result in linear reductions in productivity or fitness ). "
    [Show abstract] [Hide abstract] ABSTRACT: Background There is an urgent need for vector control tools to supplement long-lasting insecticidal nets (LLINs) and indoor residual spraying; particularly in the Solomon Islands where the primary vector, Anopheles farauti, is highly anthropophagic and feeds mainly outdoors and early in the evening. Currently, the only supplementary tool recommended by the World Health Organization is larval source management (LSM). The feasibility and potential effectiveness of LSM requires information on the distribution of anophelines, the productivity of larval habitats and the potential impacts of larval control on adult fitness. Methods The distribution of anophelines in Central and Western Provinces in the Solomon Islands was mapped from cross-sectional larval habitat surveys. The composition and micro-distribution of larval instars within a large permanent river-mouth lagoon was examined with a longitudinal survey. Density-dependent regulation of An. farauti larvae was investigated by longitudinally following the development and survival of different densities of first instars in floating cages in a river-mouth lagoon. Results Five anopheline species were molecularly identified from a range of fresh and brackish water habitats: An. farauti s.s., An. hinesorum, An. lungae, An. nataliae and An. solomonis. The most common habitats used by the primary malaria vector, An. farauti, were coastal lagoons and swamps. In the detailed study of lagoon micro-productivity, An. farauti was non-uniformly distributed with highest densities found at collections sites most proximal and distal to the mouth of the lagoon. The survival of An. farauti larvae was more than twofold lower when larvae were held at the highest experimental density (1 larva per 3.8 cm2) when compared with the lowest density (1 larva per 38 cm2). Conclusions The only documented major malaria vector collected in larval surveys in both Central and Western Provinces was An. farauti. Lagoons and swamps, the most common, largest and (potentially) most productive larval sites of this malaria vector, were “few, fixed and findable” and theoretically, therefore, amenable to successful LSM. However, the immense scale and complexity of these ecosystems in which An. farauti larvae are found raises questions regarding the ability to effectively control the larvae, as incomplete larviciding could trigger density dependent effects resulting in increased larval survivorship. While LSM has the potential to significantly contribute to malaria control of this early and outdoor biting vector, more information on the distribution of larvae within these extensive habitats is required to maximize the effectiveness of LSM.
    Full-text · Article · Mar 2016 · Malaria Journal
  • Source
    • "Additionally, we captured differences in within-site temporal variance, as well as between-site correlation, by incorporating a full variance–covariance matrix, estimated directly from the data (see [47] for full details of the method). The regressed value b i is then taken as the estimate for the return rate at site i [17,48]. All analysis was performed using R v. 3.1.2 "
    [Show abstract] [Hide abstract] ABSTRACT: Measurement of population persistence is a long-standing problem in ecology; in particular, whether it is possible to gain insights into persistence without long time-series. Fractal measurements of spatial patterns, such as the Korcak exponent or boundary dimension, have been proposed as indicators of the persistence of underlying dynamics. Here we explore under what conditions a predictive relationship between fractal measures and persistence exists. We combine theoretical arguments with an aerial snapshot and time series from a long-term study of seagrass. For this form of vegetative growth, we find that the expected relationship between the Korcak exponent and persistence is evident at survey sites where the population return rate can be measured. This highlights a limitation of the use of power-law patch-size distributions and other indicators based on spatial snapshots. Moreover, our numeric simulations show that for a single species and a range of environmental conditions that the Korcak–persistence relationship provides a link between temporal dynamics and spatial pattern; however, this relationship is specific to demographic factors, so we cannot use this methodology to compare between species.
    Full-text · Article · Mar 2016 · Royal Society Open Science
  • Source
    • "To estimate θ, population trajectories that increase from low densities to carrying capacity are needed but are not available for the red kite in the literature. However , the snail kite (Rostrhamus sociabilis) in Florida has an estimated θ of 5.58 (we derived this value by applying the Sibly et al. [41] method to data in [56]; S3Fig), indicating kite populations may not experience density-dependent growth until they increase to near steady state, similar to the buzzard. Therefore, a high θ of 5.58 was applied in the theta-logistic regression in the red kite population model. "
    [Show abstract] [Hide abstract] ABSTRACT: Little is known about the magnitude of the effects of lead shot ingestion alone or combined with poisons (e.g., in bait or seeds/granules containing pesticides) on population size, growth, and extinction of non-waterbird avian species that ingest these substances. We used population models to create example scenarios demonstrating how changes in these parameters might affect three susceptible species: grey partridge (Perdix perdix), common buzzard (Buteo buteo), and red kite (Milvus milvus). We added or subtracted estimates of mortality due to lead shot ingestion (4-16% of mortality, depending on species) and poisons (4-46% of mortality) reported in the UK or France to observed mortality of studied populations after models were calibrated to observed population trends. Observed trends were decreasing for partridge (in continental Europe), stable for buzzard (in Germany), and increasing for red kite (in Wales). Although lead shot ingestion and poison at modeled levels did not change the trend direction for the three species, they reduced population size and slowed population growth. Lead shot ingestion at modeled rates reduced population size of partridges by 10%, and when combined with bait and pesticide poisons, by 18%. For buzzards, decrease in mean population size by lead shot and poisons combined was much smaller (≤ 1%). The red kite population has been recovering; however, modeled lead shot ingestion reduced its annual growth rate from 6.5% to 4%, slowing recovery. If mortality from poisoned baits could be removed, the kite population could potentially increase at a rapid annual rate of 12%. The effects are somewhat higher if ingestion of these substances additionally causes sublethal reproductive impairment. These results have uncertainty but suggest that declining or recovering populations are most sensitive to lead shot or poison ingestion, and removal of poisoned baits can have a positive impact on recovering raptor populations that frequently feed on carrion.
    Full-text · Article · Jan 2016 · PLoS ONE
Show more