Translocation of β-Galactosidase Mediated by the Cell-Penetrating Peptide Pep-1 into Lipid Vesicles and Human HeLa Cells Is Driven by Membrane Electrostatic Potential †

Centro de Química e Bioquímica, Faculdade de Ciências da Universidade de Lisboa, Ed. C8, Campo Grande, 1749-016 Lisboa, Portugal.
Biochemistry (Impact Factor: 3.02). 09/2005; 44(30):10189-98. DOI: 10.1021/bi0502644
Source: PubMed


The cell-penetrating peptide (CPP) pep-1 is capable of introducing large proteins into different cell lines, maintaining their biological activity. Two possible mechanisms have been proposed to explain the entrance of other CPPs in cells, endosomal-dependent and independent types. In this work, we evaluated the molecular mechanisms of pep-1-mediated cellular uptake of beta-galactosidase (beta-Gal) from Escherichia coli in large unilamellar vesicles (LUV) and HeLa cells. Fluorescence spectroscopy was used to evaluate the translocation process in model systems (LUV). Immunofluorescence microscopy was used to study the translocation in HeLa cells. Enzymatic activity detection enabled us to monitor the internalization of beta-Gal into LUV and the functionality of the protein in the interior of HeLa cells. Beta-Gal translocated into LUV in a transmembrane potential-dependent manner. Likewise, the extent of beta-Gal incorporation was extensively decreased in depolarized cells. Furthermore, beta-Gal uptake efficiency and kinetics were temperature-independent, and beta-Gal did not colocalize with endosomes, lysosomes, or caveosomes. Therefore, beta-Gal translocation was not associated with the endosomal pathway. Although an excess of pep-1 was mandatory for beta-Gal translocation in vivo, transmembrane pores were not formed as concluded from the trypan blue exclusion method. These results altogether indicated that protein uptake both in vitro with LUV and in vivo with HeLa cells was mainly, if not solely, dependent on negative transmembrane potential across the bilayer, which suggests a physical mechanism governed by electrostatic interactions between pep-1 (positively charged) and membranes (negatively charged).

Download full-text


Available from: Júlia Costa, Mar 14, 2014
  • Source
    • "The nature of CPP-cargo linkage, a crucial issue in CPP delivery strategies (Huang et al. 2013; Nasrolahi Shirazi et al. 2013), can be roughly divided into covalent and noncovalent . The latter is preferred for large payloads such as proteins or, especially, nucleic acids (Crombez et al. 2011; Deshayes et al. 2010; Henriques et al. 2005; Lindberg et al. 2013), whose charge complementarity with cationic CPPs is thus usefully exploited. For smaller size cargos like pharmaceuticals, however, low yields of non-covalent complex formation often prevent success. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Therapeutic application of many drugs is often hampered by poor or denied access to intracellular targets. A case in point is miltefosine (MT), an orally active antiparasitic drug, which becomes ineffective when parasites develop dysfunctional uptake systems. We report here the synthesis of a fluorescent BODIPY-embedding MT analogue with appropriate thiol functionalization allowing linkage to the cell-penetrating Tat(48-60) peptide through disulfide or thioether linkages. The resulting constructs are efficiently internalized into the otherwise MT-invulnerable R40 Leishmania strain, resulting in fast parasite killing, and hence successful avoidance of the resistance. In the disulfide-linked conjugate, an additional fluoro tag on the Tat moiety allows to monitor its reductive cleavage within the cytoplasm. Terminally differentiated cells such as peritoneal macrophages, impervious to MT unless infected by Leishmania, can uptake the drug in its Tat-conjugated form. The results afford proof-of-principle for using CPP vectors to avert drug resistance in parasites, and/or for tackling leishmaniasis by modulating macrophage uptake.
    Full-text · Article · Jan 2014 · Amino Acids
  • Source
    • "For each sample, 1 µM ssDNA-Alexa488 was added, as well as 5 µM rhodamine B-labeled pepR or pepM, or 3 µM of unlabeled DENV C protein. The 4°C experiments were performed as previously described by Henriques et al. [39]. Cultured cells were maintained for at least 60 min at 4°C prior to ssDNA and DENV C protein addition. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Supercharged proteins are a recently identified class of proteins that have the ability to efficiently deliver functional macromolecules into mammalian cells. They were first developed as bioengineering products, but were later found in the human proteome. In this work, we show that this class of proteins with unusually high net positive charge is frequently found among viral structural proteins, more specifically among capsid proteins. In particular, the capsid proteins of viruses from the Flaviviridae family have all a very high net charge to molecular weight ratio (> +1.07/kDa), thus qualifying as supercharged proteins. This ubiquity raises the hypothesis that supercharged viral capsid proteins may have biological roles that arise from an intrinsic ability to penetrate cells. Dengue virus capsid protein was selected for a detailed experimental analysis. We showed that this protein is able to deliver functional nucleic acids into mammalian cells. The same result was obtained with two isolated domains of this protein, one of them being able to translocate lipid bilayers independently of endocytic routes. Nucleic acids such as siRNA and plasmids were delivered fully functional into cells. The results raise the possibility that the ability to penetrate cells is part of the native biological functions of some viral capsid proteins.
    Full-text · Article · Dec 2013 · PLoS ONE
  • Source
    • "Morris Group has designed a new type of PEP-1 peptide carrier (KETWWETWWTEWSQPKKKRKV) that enables the entering of large proteins into living cells [3]. In fact, several laboratories have successfully delivered full-length PEP-1 fusion proteins into cultured cells and nervous system by using this PEP-1 peptide carrier, including EGFP, β-Gal, antibodies, cyclophilin A, and human copper chaperone for Cu, Zn-SOD1 and CAT [4-7]. Our previous studies have demonstrated that PEP-1-CAT fusion proteins can be transduced into myocardium and protect against myocardial injury induced by ischemia-reperfusion in rats [8]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Catalase (CAT) breaks down H2O2 into H2O and O2 to protects cells from oxidative damage. However, its translational potential is limited because exogenous CAT cannot enter living cells automatically. This study is aimed to investigate if PEP-1-CAT fusion protein can effectively protect cardiomyocytes from oxidative stress due to hypoxia/reoxygenation (H/R)-induced injury. Methods H9c2 cardomyocytes were pretreated with catalase (CAT) or PEP-1-CAT fusion protein followed by culturing in a hypoxia and re-oxygenation condition. Cell apoptosis were measured by Annexin V and PI double staining and Flow cytometry. Intracellular superoxide anion level was determined, and mitochondrial membrane potential was measured. Expression of apoptosis-related proteins including Bcl-2, Bax, Caspase-3, PARP, p38 and phospho-p38 was analyzed by western blotting. Results PEP-1-CAT protected H9c2 from H/R-induced morphological alteration and reduced the release of lactate dehydrogenase (LDH) and malondialdehyde content. Superoxide anion production was also decreased. In addition, PEP-1-CAT inhibited H9c2 apoptosis and blocked the expression of apoptosis stimulator Bax while increased the expression of Bcl-2, leading to an increased mitochondrial membrane potential. Mechanistically, PEP-1-CAT inhibited p38 MAPK while activating PI3K/Akt and Erk1/2 signaling pathways, resulting in blockade of Bcl2/Bax/mitochondrial apoptotic pathway. Conclusion Our study has revealed a novel mechanism by which PEP-1-CAT protects cardiomyocyte from H/R-induced injury. PEP-1-CAT blocks Bcl2/Bax/mitochondrial apoptotic pathway by inhibiting p38 MAPK while activating PI3K/Akt and Erk1/2 signaling pathways.
    Full-text · Article · May 2013 · Journal of Translational Medicine
Show more