Runx1/AML1/Cbfa2 Mediates Onset of Mesenchymal Cell Differentiation Toward Chondrogenesis

Center for Musculoskeletal Research, Department of Orthopeadics, University of Rochester, Rochester, New York 14642, USA.
Journal of Bone and Mineral Research (Impact Factor: 6.83). 10/2005; 20(9):1624-36. DOI: 10.1359/JBMR.050516
Source: PubMed


Runx proteins mediate skeletal development. We studied the regulation of Runx1 during chondrocyte differentiation by real-time RT-PCR and its function during chondrogenesis using overexpression and RNA interference. Runx1 induces mesenchymal stem cell commitment to the early stages of chondrogenesis.
Runx1 and Runx2 are co-expressed in limb bud cell condensations that undergo both cartilage and bone differentiation during murine development. However, the cooperative and/or compensatory effects these factors exert on skeletal formation have yet to be elucidated.
Runx1/Cbfa2 and Runx2/Cbfa1 were examined at different stages of embryonic development by immunohistochemistry. In vitro studies used mouse embryonic limb bud cells and assessed Runx expressions by immunohistochemistry and real-time RT-PCR in the presence and absence of TGFbeta and BMP2. Runx1 was overexpressed in mesenchymal cell progenitors using retroviral infection.
Immunohistochemistry showed that Runx1 and Runx2 are co-expressed in undifferentiated mesenchyme, had similar levels in chondrocytes undergoing transition from proliferation to hypertrophy, and that there was primarily Runx2 expression in hypertrophic chondrocytes. Overall, the expression of Runx1 remained significantly higher than Runx2 mRNA levels during early limb bud cell maturation. Treatment of limb bud micromass cultures with BMP2 resulted in early induction of both Runx1 and Runx2. However, upregulation of Runx2 by BMP2 was sustained, whereas Runx1 decreased in later time-points when type X collagen was induced. Although TGFbeta potently inhibits Runx2 and type X collagen, it induces type II collagen mRNA and mildly but significantly inhibits Runx1 isoforms in the early stages of chondrogenesis. Virus-mediated overexpression of Runx1 in mouse embryonic mesenchymal cells resulted in a potent induction of the early chondrocyte differentiation markers but not the hypertrophy marker, type X collagen. Knockdown or Runx1 potently inhibits type II collagen, alkaline phosphatase, and Runx2 and has a late inhibitory effect on type X collagen.
These findings show a distinct and sustained role for Runx proteins in chondrogenesis and subsequent chondrocyte maturation. Runx1 is highly expressed during chondrogenesis in comparison with Runx2, and Runx1 gain of functions stimulated this process. Thus, the Runx genes are uniquely expressed and have distinct roles during skeletal development.

  • Source
    • "Runx genes have many other roles in addition to their major functions and can be co-expressed in the same tissue. Although Runx1 plays a key role in hematopoiesis, it also cooperates with Runx2 [11] [12] in sternum development and in the early stages of mesenchymal differentiation [13]. Runx genes function as DNA binding transcription factors and interact with co-repressors or co-activators in the suppression or activation of genes. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The orchestration of histone modifiers is required to establish the epigenomic status that regulates gene expression during development. Whsc1 (Wolf-Hirschhorn Syndrome candidate 1), a histone H3 lysine 36 (H3K36) trimethyltransferase, is one of the major genes associated with Wolf-Hirshhorn syndrome, which is characterized by skeletal abnormalities. However, the role of Whsc1 in skeletal development remains unclear. Here, we show that Whsc1 regulates gene expression through Runt-related transcription factor (Runx) 2, a transcription factor central to bone development, and p300, a histone acetyltransferase, to promote bone differentiation. Whsc1-/- embryos exhibited defects in ossification in the occipital bone and sternum. Whsc1 knockdown in pre-osteoblast cells perturbed histone modification patterns in bone-related genes and led to defects in bone differentiation. Whsc1 increased the association of p300 with Runx2, activating the bone-related genes Osteopontin (Opn) and Collagen type Ia (Col1a1), and Whsc1 suppressed the overactivation of these genes via H3K36 trimethylation. Our results suggest that Whsc1 fine-tunes the expression of bone-related genes by acting as a modulator in balancing H3K36 trimethylation and histone acetylation. Our results provide novel insight into the mechanisms by which this histone methyltransferase regulates gene expression.
    Full-text · Article · Sep 2014 · PLoS ONE
  • Source
    • "Chondrogenesis and chondrocyte differentiation were examined in PDMPC micromass cultures (Fig. 4). Two time points that reflect chondrogenesis onset (day 1) and chondrocyte maturation (day7) were examined [22], [23], in the presence and absence of BMP-2 treatment (n = 3 per group). In contrast to monolayer culture, Western blot analyses demonstrated that Cox-2 protein was markedly induced by BMP-2 in the high-density micromass cultures (Fig. 4A), suggesting Cox-2 as a BMP-2 responsive gene in chondrogenic conditions. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Periosteum provides a major source of mesenchymal progenitor cells for bone fracture repair. Combining cell-specific targeted Cox-2 gene deletion approaches with in vitro analyses of the differentiation of periosteum-derived mesenchymal progenitor cells (PDMPCs), here we demonstrate a spatial and temporal role for Cox-2 function in the modulation of osteogenic and chondrogenic differentiation of periosteal progenitors in fracture repair. Prx1Cre-targeted Cox-2 gene deletion in mesenchyme resulted in marked reduction of intramembraneous and endochondral bone repair, leading to accumulation of poorly differentiated mesenchyme and immature cartilage in periosteal callus. In contrast, Col2Cre-targeted Cox-2 gene deletion in cartilage resulted in a deficiency primarily in cartilage conversion into bone. Further cell culture analyses using Cox-2 deficient PDMPCs demonstrated reduced osteogenic differentiation in monolayer cultures, blocked chondrocyte differentiation and hypertrophy in high density micromass cultures. Gene expression microarray analyses demonstrated downregulation of a key set of genes associated with bone/cartilage formation and remodeling, namely Sox9, Runx2, Osx, MMP9, VDR and RANKL. Pathway analyses demonstrated dysregulation of the HIF-1, PI3K-AKT and Wnt pathways in Cox-2 deficient cells. Collectively, our data highlight a crucial role for Cox-2 from cells of mesenchymal lineages in modulating key pathways that control periosteal progenitor cell growth, differentiation, and angiogenesis in fracture repair.
    Full-text · Article · Jul 2014 · PLoS ONE
  • Source
    • "Chondrocyte differentiation was accomplished as a micromass, tissues were embedded and sectioned in a cryostat. The sections were fixed, washed and stained with Alcian Blue [22]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Introduction A feature which makes stem cells promising candidates for cell therapy is their ability to migrate effectively into damaged or diseased tissues. Recent reports demonstrated the increased motility of human mesenchymal stem cells (hMSC) grown under hypoxic conditions compared to normoxic cells. However, the directional migration of hMSC cultured in hypoxia has not been investigated. In this study we examined the in vitro transmembrane migration of hMSC permanently cultured in hypoxia in response to various cytokines. We also studied the involvement of RhoA, a molecule believed to play an essential role in the migration of MSC via reorganization of the cytoskeleton. Methods We compared the directional migration of human hMSCs grown permanently under normal (21%, normoxic) and low O2 (5%, hypoxic) conditions until passage 4 using an in vitro transmembrane migration assay. A series of 17 cytokines was used to induce chemotaxis. We also compared the level of GTP-bound RhoA in the cell extracts of calpeptin-activated hypoxic and normoxic hMSC. Results We found that hMSC cultured in hypoxia demonstrate markedly higher targeted migration activity compared to normoxic cells, particularly towards wound healing cytokines, including those found in ischemic and myocardial infarction. We also demonstrated for the first time that hMSC are dramatically more sensitive to activation of RhoA. Conclusions The results of this study indicate that high directional migration of hMSCs permanently grown in hypoxia is associated with the enhanced activation of RhoA. The enhanced migratory capacity of hypoxic hMSC would further suggest their potential advantages for clinical applications.
    Full-text · Article · Jan 2013 · Stem Cell Research & Therapy
Show more