Nitric oxide blunts the endothelin-mediated pulmonary vasoconstriction in exercising swine

Experimental Cardiology, Thoraxcentre, Erasmus MC, University Medical Centre Rotterdam, the Netherlands.
The Journal of Physiology (Impact Factor: 5.04). 11/2005; 568(Pt 2):629-38. DOI: 10.1113/jphysiol.2005.094227
Source: PubMed


We have previously shown that vasodilators and vasoconstrictors that are produced by the vascular endothelium, including nitric oxide (NO), prostanoids and endothelin (ET), contribute to the regulation of systemic and pulmonary vascular tone in swine, in particular during treadmill exercise. Since NO and prostanoids can modulate the release of ET, and vice versa, we investigated the integrated endothelial control of pulmonary vascular resistance in exercising swine. Specifically, we tested the hypothesis that increased NO and prostanoid production during exercise limits the vasoconstrictor influence of ET, so that loss of these vasodilators results in exaggerated ET-mediated vasoconstriction during exercise. Fifteen instrumented swine were exercised on a treadmill at 0-5 km h(-1) before and during ET(A)/ET(B) receptor blockade (tezosentan, 3 mg kg(-1) I.V.) in the presence and absence of inhibition of NO synthase (N(omega)-nitro-L-arginine, 20 mg kg(-1) I.V.) and/or cyclo-oxygenase (indometacin, 10 mg kg(-1) I.V.). In the systemic circulation, ET receptor blockade decreased vascular resistance at rest, which waned with increasing exercise intensity. Prior inhibition of either NO or prostanoid production augmented the vasodilator effect of ET receptor blockade, and these effects were additive. In contrast, in the pulmonary bed, ET receptor blockade had no effect under resting conditions, but decreased pulmonary vascular resistance during exercise. Prior inhibition of NO synthase enhanced the pulmonary vasodilator effect of ET receptor blockade, particularly during exercise, whereas inhibition of prostanoids had no effect, even after prior NO synthase inhibition. In conclusion, endogenous endothelin limits pulmonary vasodilatation in response to treadmill exercise. This vasoconstrictor influence is blunted by NO but not by prostanoids.

Download full-text


Available from: Dirk J Duncker
  • Source
    • "Thus, NO inhibits the production of ET through endothelin-converting enzyme (Lavallee et al. 2001) and modulates ET A receptor sensitivity (Wiley & Davenport, 2001). Indeed, the vasodilatation in response to ET A /ET B receptor blockade with tezosentan is larger after inhibition of NO synthesis (present study, Houweling et al. 2005), suggesting that part of the vasodilator effect of NO is exerted through inhibition of ET-mediated vasoconstriction. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Secondary pulmonary hypertension after myocardial infarction (MI) has been associated with endothelial dysfunction and activation of the endothelin (ET) system. Here, we investigated whether an increased ET-mediated pulmonary vasoconstrictor influence contributes to pulmonary hypertension after MI, and whether this increased ET vasoconstriction is caused by impaired nitric oxide (NO) and prostanoid production. For this purpose, chronically instrumented swine with and without MI ran on a treadmill at 0-4 km h(-1). Mixed ET(A)/ET(B) receptor blockade (tezosentan) was performed in the absence and presence of single or combined inhibition of endothelial NO synthase (eNOS, with N(omega)-nitro-l-arginine) and cyclo-oxygenase (COX, with indometacin). In normal swine, mixed ET(A)/ET(B) blockade decreased pulmonary vascular resistance, but only during exercise. In MI swine, an increased ET-mediated vasoconstrictor influence was observed in the pulmonary circulation both at rest and during exercise. Inhibition of COX resulted in pulmonary vasoconstriction at rest in MI, but not in normal swine; this vasoconstriction in MI swine was normalized by ET(A)/ET(B) receptor blockade. Inhibition of eNOS enhanced the vasodilator response to ET(A)/ET(B) blockade, indicating that NO blunts the pulmonary vasoconstrictor influence of ET. However, this vasodilator response was enhanced to a similar degree in MI and normal swine. In summary, swine with a recent MI are characterized by an exaggerated pulmonary vasoconstrictor influence of ET. This increased ET-mediated pulmonary vasoconstrictor influence is not caused by a loss of NO bioavailability, and is blunted by an increased prostanoid-mediated vasodilatation. In conclusion, an increased ET-mediated vasoconstriction, which does not appear to be the result of loss of endothelial vasodilators, contributes to pulmonary hypertension after MI.
    Full-text · Article · Jun 2007 · The Journal of Physiology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The nitric-oxide synthase (NOS; EC reaction is formulated as a partially tetrahydrobiopterin (H4Bip)-dependent 5-electron oxidation of a terminal guanidino nitrogen of L-arginine (Arg) associated with stoichiometric consumption of dioxygen (O2) and 1.5 mol of NADPH to form L-citrulline (Cit) and nitric oxide (.NO). Analysis of NOS activity has relied largely on indirect methods such as quantification of nitrite/nitrate or the coproduct Cit; we therefore sought to directly quantify .NO formation from purified NOS. However, by two independent methods, NOS did not yield detectable .NO unless superoxide dismutase (SOD; EC was present. In the presence of H4Bip, internal .NO standards were only partially recovered and the dismutation of superoxide (O2-.), which otherwise scavenges. .NO to yield ONOO-, was a plausible mechanism of action of SOD. Under these conditions, a reaction between NADPH and ONOO- resulted in considerable overestimation of enzymatic NADPH consumption. SOD lowered the NADPH:Cit stoichiometry to 0.8-1.1, suggesting either that additional reducing equivalents besides NADPH are required to explain Arg oxidation to .NO or that .NO was not primarily formed. The latter was supported by an additional set of experiments in the absence of H4Bip. Here, recovery of internal .NO standards was unaffected. Thus, a second activity of SOD, the conversion of nitroxyl (NO-) to .NO, was a more likely mechanism of action of SOD. Detection of NOS-derived nitrous oxide (N2O) and hydroxylamine (NH2OH), which cannot arise from .NO decomposition, was consistent with formation of an .NO precursor molecule such as NO-. When, in the presence of SOD, glutathione was added, S-nitrosoglutathione was detected. Our results indicate that .NO is not the primary reaction product of NOS-catalyzed Arg turnover and an alternative reaction mechanism and stoichiometry have to be taken into account.
    Full-text · Article · Jan 1997 · Proceedings of the National Academy of Sciences
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We previously observed that pulmonary hypertension secondary to myocardial infarction (MI) in swine is characterized by elevated plasma endothelin (ET) levels and pulmonary vascular resistance (PVR). Consequently, we tested the hypothesis that an increased ET-mediated vasoconstrictor influence contributes to secondary pulmonary hypertension after MI and investigated the involvement of ET(A) and ET(B) receptor subtypes. Chronically instrumented swine with (MI swine; n = 25) or without (normal swine; n = 19) MI were studied at rest and during treadmill exercise (up to 4 km h(-1)), in the absence and presence of the ET(A) antagonist EMD 122946 or the mixed ET(A)/ET(B) antagonist tezosentan. In normal swine, exercise caused a small decrease in PVR. ET(A) blockade had no effect on PVR at rest or during exercise. Conversely, ET(A)/ET(B) blockade decreased PVR but only during exercise (at 4 km h(-1), from 3.0 +/- 0.1 to 2.3 +/- 0.1 mmHg min l(-1); P <or= 0.05). MI increased pulmonary arterial pressure and PVR both at rest and during exercise (both P <or= 0.05). The increased pulmonary arterial pressure correlated with the increased plasma ET levels in resting MI swine (r = 0.71; P <or= 0.01). Furthermore, the pulmonary vasoconstrictor response to ET-1 infusion was enhanced after MI (P <or= 0.05). ET(A)/ET(B) blockade decreased PVR in MI swine from 3.6 +/- 0.3 to 3.1 +/- 0.5 mmHg min l(-1) at rest and from 3.4 +/- 0.3 to 2.4 +/- 0.2 mmHg min l(-1) during exercise at 4 km h(-1) (both P <or= 0.05). This increased response to mixed ET(A)/ET(B) blockade in MI compared to normal swine appeared to be the result of an increased ET(A)-mediated vasoconstriction, as ET(A) blockade decreased PVR in MI swine from 3.4 +/- 0.4 to 2.8 +/- 0.2 mmHg min l(-1) at rest and from 3.1 +/- 0.3 to 2.6 +/- 0.2 mmHg min l(-1) at 4 km h(-1) (both P <or= 0.05). In conclusion, increased plasma ET levels together with increased pulmonary resistance vessel responsiveness to ET result in an exaggerated pulmonary vasoconstrictor influence of ET in swine with a recent MI. This vasoconstrictor influence is the result of an emergent tonic ET(A)-mediated vasoconstriction in addition to the exercise-induced ET(B)-mediated vasoconstriction that is already present in normal swine.
    Full-text · Article · Aug 2006 · The Journal of Physiology
Show more