Krouwels, I. M. et al. A glue for heterochromatin maintenance: stable SUV39H1 binding to heterochromatin is reinforced by the SET domain. J. Cell Biol. 170, 537-549

Molecular Cell Biology Group , Leiden University, Leyden, South Holland, Netherlands
The Journal of Cell Biology (Impact Factor: 9.83). 09/2005; 170(4):537-49. DOI: 10.1083/jcb.200502154
Source: PubMed


Trimethylation of histone H3 lysine 9 and the subsequent binding of heterochromatin protein 1 (HP1) mediate the formation and maintenance of pericentromeric heterochromatin. Trimethylation of H3K9 is governed by the histone methyltransferase SUV39H1. Recent studies of HP1 dynamics revealed that HP1 is not a stable component of heterochromatin but is highly mobile (Cheutin, T., A.J. McNairn, T. Jenuwein, D.M. Gilbert, P.B. Singh, and T. Misteli. 2003. Science. 299:721-725; Festenstein, R., S.N. Pagakis, K. Hiragami, D. Lyon, A. Verreault, B. Sekkali, and D. Kioussis. 2003. Science. 299:719-721). Because the mechanism by which SUV39H1 is recruited to and interacts with heterochromatin is unknown, we studied the dynamic properties of SUV39H1 in living cells by using fluorescence recovery after photobleaching and fluorescence resonance energy transfer. Our results show that a substantial population of SUV39H1 is immobile at pericentromeric heterochromatin, suggesting that, in addition to its catalytic activity, SUV39H1 may also play a structural role at pericentromeric regions. Analysis of SUV39H1 deletion mutants indicated that the SET domain mediates this stable binding. Furthermore, our data suggest that the recruitment of SUV39H1 to heterochromatin is at least partly independent from that of HP1 and that HP1 transiently interacts with SUV39H1 at heterochromatin.

Download full-text


Available from: Roeland W Dirks
  • Source
    • "SUV39H1 is a H3K9 methytransferase and Heterochromatin associated HP1α is generally associated with gene repression and bind to H3 at lysine K9 in the trimethylated form [24], [38], [39]. HP1α also form a complex with SUV39H1 [40]. Our results show that HP1α and SUV39H1 also interact with DNMT3L DMC leading to inhibition of the reporter gene expression. "
    [Show abstract] [Hide abstract]
    ABSTRACT: DNMT3L, a member of DNA methyltransferases family, is present only in mammals. As it provides specificity to the action of de novo methyltransferases, DNMT3A and DNMT3B and interacts with histone H3, DNMT3L has been invoked as the molecule that can read the histone code and translate it into DNA methylation. It plays an important role in the initiation of genomic imprints during gametogenesis and in nuclear reprogramming. With important functions attributed to it, it is imperative that the DNMT3L expression is tightly controlled. Previously, we had identified a CpG island within the human DNMT3L promoter and first exon that showed loss of DNA methylation in cancer samples. Here we show that this Differentially Methylated CpG island within DNMT3L (DNMT3L DMC) acts to repress transcription, is a Polycomb/Trithorax Response Element (PRE) and interacts with both PRC1 and PRC2 Polycomb repressive complexes. In addition, it adopts inactive chromatin conformation and is associated with other inactive chromatin-specific proteins like SUV39H1 and HP1. The presence of DNMT3L DMC also influences the adjacent promoter to adopt repressive histone post-translational modifications. Due to its association with multiple layers of repressive epigenetic modifications, we believe that PRE within the DNMT3L DMC is responsible for the tight regulation of DNMT3L expression and the aberrant epigenetic modifications of this region leading to DNMT3L overexpression could be the reason of nuclear programming during carcinogenesis.
    Full-text · Article · Apr 2014 · PLoS ONE
  • Source
    • "How to explain the behavior of Suv39H1-S391E protein? A previous report showed that 20–40% of Suv39H1 protein is stably bound within heterochromatin loci, suggesting the structural role in heterochromatic regions (43). In addition, they showed that Suv39H1-ΔSET domain mutants are more dynamic than the full-length protein. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Although several studies have suggested that the functions of heterochromatin regulators may be regulated by post-translational modifications during cell cycle progression, regulation of the histone methyltransferase Suv39H1 is not fully understood. Here, we demonstrate a direct link between Suv39H1 phosphorylation and cell cycle progression. We show that CDK2 phosphorylates Suv39H1 at Ser391 and these phosphorylation levels oscillate during the cell cycle, peaking at S phase and maintained during S-G2-M phase. The CDK2-mediated phosphorylation of Suv39H1 at Ser391 results in preferential dissociation from chromatin. Furthermore, phosphorylation-mediated dissociation of Suv39H1 from chromatin causes an enhanced occupancy of JMJD2A histone demethylase on heterochromatin and alterations in inactive histone marks. Overexpression of phospho-mimic Suv39H1 induces early replication of heterochromatin, suggesting the importance of Suv39H1 phosphorylation in the replication of heterochromatin. Moreover, overexpression of phospho-defective Suv39H1 caused altered replication timing of heterochromatin and increases sensitivity to replication stress. Collectively, our data suggest that phosphorylation-mediated modulation of Suv39H1-chromatin association may be an initial step in heterochromatin replication.
    Full-text · Article · Apr 2014 · Nucleic Acids Research
  • Source
    • "c a Data from different FRAP studies (Cheutin et al. 2003, 2004; Dialynas et al. 2007; Festenstein et al. 2003; Krouwels et al. 2005; Müller et al. 2009; Schmiedeberg et al. 2004; Souza et al. 2009). Effective diffusion coefficients D eff (including also binding contributions) were calculated from half times of recovery or refitting the data taking into account the size of the spot or rectangular bleach geometry (Sprague et al. 2004; Wachsmuth and Weisshart 2007). "
    [Show abstract] [Hide abstract]
    ABSTRACT: The genome of eukaryotes is organized into a dynamic nucleoprotein complex referred to as chromatin, which can adopt different functional states. Both the DNA and the protein component of chromatin are subject to various post-translational modifications that define the cell's gene expression program. Their readout and establishment occurs in a spatio-temporally coordinated manner that is controlled by numerous chromatin-interacting proteins. Binding to chromatin in living cells can be measured by a spatially resolved analysis of protein mobility using fluorescence microscopy based approaches. Recent advancements in the acquisition of protein mobility data using fluorescence bleaching and correlation methods provide data sets on diffusion coefficients, binding kinetics, and cellular concentrations on different time and length scales. The combination of different techniques is needed to dissect the complex interplay of diffusive translocations, binding events, and mobility constraints of the chromatin environment. While bleaching techniques have their strength in the characterization of particles that are immobile on the second/minute time scale, a correlation analysis is advantageous to characterize transient binding events with millisecond residence time. The application and synergy effects of the different approaches to obtain protein mobility and interaction maps in the nucleus are illustrated for the analysis of heterochromatin protein 1.
    Full-text · Article · Jan 2011 · Chromosome Research
Show more