The ubiquitin signal: Assembly, recognition and termination

Department of Biochemistry, 4017 Rollins Research Building, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322, USA.
EMBO Reports (Impact Factor: 9.06). 10/2005; 6(9):815-20. DOI: 10.1038/sj.embor.7400506
Source: PubMed


The field of Ub-dependent signalling has come of age. We are now focused on understanding its involvement in specific diseases and in basic pathways of regulation and control. Genomics and proteomics are being applied in numerous ways and a variety of tools are being developed to monitor ubiquitylation in cells, tissues and whole animals. Pharmacological agents are widely sought and promise to move the field forward even further and faster. The genetic diversity of many of the gene families suggests that selective inhibitors might be involved, as in the cases of kinases and phosphatases. Alternatively, we are getting glimpses of the mechanisms of recognition of the Ub signal, and there is a deep appreciation that these pathways are regulated by numerous multi-protein complexes with the involvement of adaptors, scaffolds and substrate-recognition modules. The opportunities to perturb specific subsets of these pathways may well involve the search for drugs that interfere with these multi-protein complexes.

Download full-text


Available from: Keith D Wilkinson
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The proteins of the RAF family (A-RAF, B-RAF, and C-RAF) are serine/threonine-kinases that play important roles in development, mature cell regulation and cancer. Although it is widely held that their localization on membranes is an important aspect of their function, there are few data addressing this aspect of their mode of action. Here, we report that each member of the RAF family exhibits a specific distribution at the level of cellular membranes, and that C-RAF is the only isoform that directly targets mitochondria. We find that the RAF kinases exhibit intrinsic differences in terms of mitochondrial affinity, and that C-RAF is the only isoform that binds this organelle efficiently. This affinity is conferred by the C-RAF amino-terminal domain, and does not depend on the presence of RAS GTPases on the surface of mitochondria. Furthermore, we analyze the consequences of C-RAF activation on the cellular and molecular level. C-RAF activation on mitochondria dramatically changes their morphology and their subcellular distribution. On the molecular level, we examine the role of C-RAF in the regulation of the pro-apoptotic Bcl-2 family member BAD. This protein exhibits the original mode of regulation by phosphorylation. Although several reports addressed the regulation of BAD by C-RAF, the exact mode of action as well as the consequences of C-RAF activation on BAD are still not completely understood. We show that the inducible activation of C-RAF promotes the rapid phosphorylation of BAD on Serine-112 (Ser-75 in the human protein), through a cascade involving the kinases MEK and RSK. Our findings reveal a new aspect of the regulation of BAD protein and its control by the RAF pathway: we find that C-RAF activation promotes BAD poly-ubiquitylation in a phosphorylation-dependent fashion, and increases the turn-over of this protein through proteasomal degradation. Die Proteine der RAF-Familie (A-RAF, B-RAF, C-RAF) sind Serin/Threonin-Kinasen, die eine wichtige Rolle in der Entwicklung, in der Zellregulation und in Krebs spielen. Obwohl es weitgehend anerkannt ist, dass die Lokalisation an Membranen ein wichtiger Aspekt ihrer Funktion ist, gibt es nur wenige Daten, die diesen Punkt ihrer Wirkungsweise beschreiben. Wir zeigen hier, dass jedes Mitglied der RAF-Familie eine spezifische Verteilung an zellulären Membranen besitzt, und dass C-RAF die einzige Isoform ist, die direkt an Mitochondrien bindet. Weiterhin zeigen wir, dass RAF-Kinasen intrinsische Unterschiede in ihrer mitochondrialen Affinität aufweisen, wobei C-RAF die einzige Isoform ist, die an dieses Organell effizient bindet. Diese Affinität wird von der amino-terminalen Domäne von C-RAF vermittelt und ist unabhängig vom Vorkommen der RAS-GTPasen auf der Oberfläche von Mitochondrien. Des Weiteren haben wir die Konsequenzen der Aktivierung von C-RAF auf zellulärer als auch auf molekularer Ebene untersucht. C-RAF Aktivierung an Mitochondrien hat drastische Änderungen in deren Morphologie und subzellulärer Verteilung zur Folge. Auf molekularer Ebene haben wir die Rolle von C-RAF in der Regulation des pro-apoptotischen Bcl-2 Familien Proteins BAD untersucht. Dieses Protein wird über Phosphorylierung reguliert. Obwohl eine Vielzahl von Arbeiten die Regulation von BAD durch C-RAF untersuchten, sind die exakte Wirkungsweise wie auch die Konsequenzen der C-RAF Aktivierung im Hinblick auf BAD immer noch unklar. Wir zeigen, dass die induzierbare Aktivierung von C-RAF die rapide Phosphorylierung von BAD an Serin 112 (Serin 75 im humanen Protein) zur Folge hat. Dieser Prozess wird durch eine Kaskade vermittelt, welche die Kinasen MEK und RSK einbezieht. Des Weiteren decken unsere Ergebnisse einen neuen Aspekt der Regulation des BAD Proteins auf und dessen Kontrolle durch den RAF-Signalweg: Wir zeigen, dass die Aktivierung von C-RAF die phosphorylierungs-abhängige Poly-ubiquitylierung von BAD zur Folge hat. Weiterhin beschleunigt die Aktivierung von C-RAF den Umsatz des BAD Proteins durch proteasomalen Abbau.
    Full-text · Article ·
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ubiquitination--the linkage of one or more molecules of the protein ubiquitin to another protein--regulates a wide range of biological processes in all eukaryotes. We review the proteome-wide strategies that are being used to study aspects of ubiquitin biology, including substrates, components of the proteasome and ubiquitin ligases, and deubiquitination.
    Full-text · Article · Feb 2005 · Genome biology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Avant le début de ma thèse, le laboratoire avait découvert et caractérisé HDAC6, une Histone Déacétylase atypique qui possède deux domaines déacétylases et peut interagir directement avec l'ubiquitine, grâce à son domaine ZnF-UBP. De plus, le laboratoire avait montré que HDAC6 interagit avec UFD3/PLAP, un régulateur du recyclage de l'ubiquitine, et p97/VCP, un orthologue murin de la chaperonne de levure Cdc48p. Cependant, aucune fonction biologique dans la voie d'ubiquitination des protéines n'était connue pour HDAC6. Nous avons tout d'abord observé que la surexpression de HDAC6 ralenti la dégradation des protéines poly-ubiquitinées, via son ZnF-UBP, son domaine de liaison à l'ubiquitine. Grâce à une série d'expériences, nous avons pu montrer que les complexes HDAC6-p97/VCP régulent directement la stabilité des protéines poly-ubiquitinées. L'accumulation intracellulaire de protéines poly-ubiquitinées peut être toxique pour les cellules si aucune réponse cellulaire n'est engagée. En réalité, une telle accumulation active le facteur de transcription Heat Shock Factor 1 (HSF1) afin de promouvoir la survie de la cellule. Grâce à ces considérations, nous avons découvert que HDAC6 contrôle la réponse cellulaire à l'accumulation de protéines poly-ubiquitinées et avons disséqué les mécanismes impliqués dans ce contrôle. Nous avons trouvé qu'en l'absence de stress, HDAC6 et HSF1 sont en complexes avec p97/VCP et HSP90. Cependant, lorsque la concentration intracellulaire en protéines poly-ubiquitinées augmente, comme lors d'une inhibition du protéasome, HDAC6 est re-larguée du complexe de manière ubiquitine et ZnF-UBP dépendante. Un tel re-largage permet ensuite à p97/VCP d'activer HSF1 et d'engager la cellule dans la réponse au stress.
    Preview · Article · Jan 2006
Show more