On-Road Driving with Moderate Visual Field Loss

Department of Ophthalmology, University of Alabama at Birmingham, Birmingham, Alabama, United States
Optometry and Vision Science (Impact Factor: 1.6). 08/2005; 82(8):657-67. DOI: 10.1097/01.opx.0000175558.33268.b5
Source: PubMed


We examined the relationship between visual field extent and driving performance in an open, on-road environment using a detailed scoring method that assessed the quality of specific skills for a range of maneuvers. The purpose was to determine which maneuvers and skills should be included in future, larger scale investigations of the effect of peripheral field loss on driving performance.
Twenty-eight current drivers (67 +/- 14 years) with restricted peripheral visual fields participated. Binocular visual field extent was quantified using Goldmann perimetry (V4e target). The useful field of view (UFOV) and Pelli-Robson letter contrast sensitivity tests were administered. Driving performance was assessed along a 14-mile route on roads in the city of Birmingham, Alabama. The course included a representative variety of general driving maneuvers, as well as maneuvers expected to be difficult for people with restricted fields.
Drivers with more restricted horizontal and vertical binocular field extents showed significantly (p < or = 0.05) poorer skills in speed matching when changing lanes, in maintaining lane position and keeping to the path of the curve when driving around curves, and received significantly (p < or = 0.05) poorer ratings for anticipatory skills. Deficits in UFOV performance and poorer contrast sensitivity scores were significantly (p < or = 0.05) correlated with overall driving performance as well as specific maneuver/skill combinations.
In a small sample of drivers, mild to moderate peripheral visual field restrictions were adversely associated with specific driving skills involved in maneuvers for which a wide field of vision is likely to be important (however most were regarded as safe drivers). Further studies using similar assessment methods with drivers with more restricted fields are necessary to determine the minimum field extent for safe driving.

Download full-text


Available from: Eli Peli
  • Source
    • "Secondly, data from two on-road studies of drivers with peripheral field loss due to glaucoma had demonstrated the possibility of using reactions to unexpected hazards as an outcome measure in openroad evaluations. In the first study [40], drivers with more restricted visual fields had poorer responses to unexpected events than drivers with less restricted fields, while in the second [41] drivers with glaucoma were 6 times more likely to have a critical intervention (driving examiner took control of the vehicle) than drivers with normal vision. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Aims. Homonymous hemianopia (HH), a severe visual consequence of stroke, causes difficulties in detecting obstacles on the nonseeing (blind) side. We conducted a pilot study to evaluate the effects of oblique peripheral prisms, a novel development in optical treatments for HH, on detection of unexpected hazards when driving. Methods. Twelve people with complete HH (median 49 years, range 29–68) completed road tests with sham oblique prism glasses (SP) and real oblique prism glasses (RP). A masked evaluator rated driving performance along the 25 km routes on busy streets in Ghent, Belgium. Results. The proportion of satisfactory responses to unexpected hazards on the blind side was higher in the RP than the SP drive (80% versus 30%; P = 0.001), but similar for unexpected hazards on the seeing side. Conclusions. These pilot data suggest that oblique peripheral prisms may improve responses of people with HH to blindside hazards when driving and provide the basis for a future, larger-sample clinical trial. Testing responses to unexpected hazards in areas of heavy vehicle and pedestrian traffic appears promising as a real-world outcome measure for future evaluations of HH rehabilitation interventions aimed at improving detection when driving.
    Full-text · Article · Dec 2012 · Stroke Research and Treatment
  • Source
    • "The visual field is of great importance while driving; a limited field of vision hinders the driver’s capability of not only detecting objects in the periphery, but also judging distances and speed. Studies have shown that drivers with limited fields of vision have significantly poorer driving capabilities with regard to speed adjustment with lane changes, maintaining lane positions in a curve, as well as anticipatory skills [2]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The purpose of this study was to compare the monocular Humphrey Visual Field (HVF) with the binocular Humphrey Esterman Visual Field (HEVF) for determining whether subjects suffering from glaucoma fulfilled the new medical requirements for possession of a Swedish driver's license. HVF SITA Fast 24-2 full threshold (monocularly) and HEVF (binocularly) were performed consecutively on the same day on 40 subjects with glaucomatous damage of varying degrees in both eyes. Assessment of results was constituted as either "pass" or "fail", according to the new medical requirements put into effect September 1, 2010 by the Swedish Transport Agency. Forty subjects were recruited and participated in the study. Sixteen subjects passed both tests, and sixteen subjects failed both tests. Eight subjects passed the HEFV but failed the HVF. There was a significant difference between HEVF and HVF (χ2, p = 0.004). There were no subjects who passed the HVF, but failed the HEVF. The monocular visual field test (HVF) gave more specific information about the location and depth of the defects, and therefore is the overwhelming method of choice for use in diagnostics. The binocular visual field test (HEVF) seems not be as efficient as the HVF in finding visual field defects in glaucoma subjects, and is therefore doubtful in evaluating visual capabilities in traffic situations.
    Full-text · Article · Aug 2012 · BMC Ophthalmology
  • Source

    Full-text · Article · Jan 2009
Show more