Article

Carnosine and Carnosine-Related Antioxidants: A Review

Institute of Biomolecular Chemistry of CNR - Padova Unit, Italy.
Current Medicinal Chemistry (Impact Factor: 3.85). 02/2005; 12(20):2293-315. DOI: 10.2174/0929867054864796
Source: PubMed

ABSTRACT

First isolated and characterized in 1900 by Gulewitsch, carnosine (beta-alanyl-L-hystidine) is a dipeptide commonly present in mammalian tissue, and in particular in skeletal muscle cells; it is responsible for a variety of activities related to the detoxification of the body from free radical species and the by-products of membrane lipids peroxidation, but recent studies have shown that this small molecule also has membrane-protecting activity, proton buffering capacity, formation of complexes with transition metals, and regulation of macrophage function. It has been proposed that carnosine could act as a natural scavenger of dangerous reactive aldehydes from the degradative oxidative pathway of endogenous molecules such as sugars, polyunsaturated fatty acids (PUFAs) and proteins. In particular, it has been recently demonstrated that carnosine is a potent and selective scavenger of alpha,beta-unsaturated aldehydes, typical by-products of membrane lipids peroxidation and considered second messengers of the oxidative stress, and inhibits aldehyde-induced protein-protein and DNA-protein cross-linking in neurodegenerative disorders such as Alzheimer's disease, in cardiovascular ischemic damage, in inflammatory diseases. The research for new and more potent scavengers for HNE and other alpha,beta-unsaturated aldehydes has produced a consistent variety of carnosine analogs, and the present review will resume, through the scientific literature and the international patents, the most recent developments in this field.

3 Followers
 · 
60 Reads
  • Source
    • "L-Carnosine (β-Ala-His) is a naturally occurring histidine dipeptide, endogenously synthesized and widely found in the brain, muscle, kidney, stomach, and, in large amounts, in the skeletal muscle. This dipeptide has been proved to perform a number of biological functions, including anti-oxidant activity, ability to chelate metal ions, inhibition of protein glycosylation, anti-inflammatory and anti-senescence properties [1]. Another aspect of the effect of L-carnosine concerns its anti-proliferative effect in human cell lines. "
    [Show abstract] [Hide abstract]
    ABSTRACT: In recent years considerable attention has been given to the use of natural substances as anticancer drugs. The natural antioxidant dipeptide L-carnosine belongs to this class of molecules because it has been proved to have a significant anticancer activity both in vitro and in vivo. Previous studies have shown that L-carnosine inhibits the proliferation of human colorectal carcinoma cells by affecting the ATP and Reactive Oxygen Species (ROS) production. In the present study we identified the Hypoxia-Inducible Factor 1α (HIF-1α) as a possible target of L-carnosine in HCT-116 cell line. HIF-1α protein is over-expressed in multiple types of human cancer and is the major cause of resistance to drugs and radiation in solid tumours. Of particular interest are experimental data supporting the concept that generation of ROS provides a redox signal for HIF-1α induction, and it is known that some antioxidants are able to suppress tumorigenesis by inhibiting HIF-1α. In the current study we found that L-carnosine reduces the HIF-1α protein level affecting its stability and decreases the HIF-1 transcriptional activity. In addition, we demonstrated that L-carnosine is involved in ubiquitin-proteasome system promoting HIF-1α degradation. Finally, we compared the antioxidant activity of L-carnosine with that of two synthetic anti-oxidant bis-diaminotriazoles (namely 1 and 2, respectively). Despite these three compounds have the same ability in reducing intracellular ROS, 1 and 2 are more potent scavengers and have no effect on HIF-1α expression and cancer cell proliferation. These findings suggest that an analysis of L-carnosine antioxidant pathway will clarify the mechanism underlying the anti-proliferative effects of this dipeptide on colon cancer cells. However, although the molecular mechanism by which L-carnosine down regulates or inhibits the HIF-1α activity has not been yet elucidated, this ability may be promising in treating hypoxia-related diseases.
    Full-text · Article · May 2014 · PLoS ONE
  • Source
    • "Up to now, the physiological and biochemical mechanisms responsible for the anti-neoplastic activity of carnosine are not clear1. Although possible mechanisms of carnosine in tumor have been extensively studied, such as influencing the chaperone activity and hypoxia inducible factor alpha signalling36, reacting with AGEs37, scavenging reactive oxygen species38, and inhibiting phosphorylation of ERK 1/2 and p38 MAP kinase1, few investigations have focused on the effects of carnosine on mTOR signaling pathway. Thus, further experiments in this study were performed in order to understand how carnosine affects the mTOR axis proteins at the molecular level. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Carnosine (β-alanyl-L-histidine), described as an enigmatic peptide for its antioxidant, anti-aging and especially antiproliferation properties, has been demonstrated to play an anti-tumorigenic role in certain types of cancer. However, its function in human gastric carcinoma remains unclear. In this study, the effect of carnosine on cell proliferation and its underlying mechanisms were investigated in the cultured human gastric carcinoma cells. The mTOR signaling axis molecules were analyzed in carnosine treated cells. The results showed that treatment with carnosine led to proliferation inhibition, cell cycle arrest in the G0/G1 phase, apoptosis increase, and inhibition of mTOR signaling activation by decreasing the phosphorylation of Akt, mTOR and p70S6K, suggesting that proliferation inhibition of carnosine in human gastric carcinoma was through the inhibition of Akt/mTOR/p70S6K pathway, and carnosine would be a mimic of rapamycin.
    Preview · Article · Apr 2014 · Journal of Cancer
  • Source
    • "Multiple methods are essential to limit autoxidation of PUFA-rich foods (Wang and Wang, 2008). The oxidative breakdown of PUFAs results in unsaturated aldehydes and carbonyls, which are potentially detrimental to human health (Figure 2; Guiotto et al., 2005; Aldini et al., 2007; Hill et al., 2008). Additionally, off-flavors are also generated and consequently the product becomes unacceptable for consumption (Brewer, 2009). "
    [Show abstract] [Hide abstract]
    ABSTRACT: A $600 million nutritional supplements market growing at 30% every year attests to consumer awareness of, and interests in, health benefits attributed to these supplements. For over 80 years the importance of polyunsaturated fatty acid (PUFA) consumption for human health has been established. The FDA recently approved the use of ω-3 PUFAs in supplements. Additionally, the market for ω-3 PUFA ingredients grew by 24.3% last year, which affirms their popularity and public awareness of their benefits. PUFAs are essential for normal human growth; however, only minor quantities of the beneficial ω-3 PUFAs eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are synthesized by human metabolism. Rather PUFAs are obtained via dietary or nutritional supplementation and modified into other beneficial metabolites. A vast literature base is available on the health benefits and biological roles of ω-3 PUFAs and their metabolism; however, information on their dietary sources and palatability of foods incorporated with ω-3 PUFAs is limited. DHA and EPA are added to many foods that are commercially available, such as infant and pet formulae, and they are also supplemented in animal feed to incorporate them in consumer dairy, meat, and poultry products. The chief sources of EPA and DHA are fish oils or purified preparations from microalgae, which when added to foods, impart a fishy flavor that is considered unacceptable. This fishy flavor is completely eliminated by extensively purifying preparations of n-3 PUFA sources. While n-3 PUFA lipid autoxidation is considered the main cause of fishy flavor, the individual oxidation products identified thus far, such as unsaturated carbonyls, do not appear to contribute to fishy flavor or odor. Alternatively, various compound classes such as free fatty acids and volatile sulfur compounds are known to impart fishy flavor to foods. Identification of the causative compounds to reduce and eventually eliminate fishy flavor is important for consumer acceptance of PUFA-fortified foods. [Supplementary materials are available for this article. Go to the publisher's online edition of Critical Reviews in Food Science and Nutrition for the following free supplemental files: Additional text, tables, and figures.].
    Full-text · Article · Jan 2014 · Critical reviews in food science and nutrition
Show more