Complications of transvaginal silicone-coated polyester synthetic mesh sling

The University of Arizona, Tucson, Arizona, United States
Urology (Impact Factor: 2.19). 11/2005; 66(4):741-5. DOI: 10.1016/j.urology.2005.04.027
Source: PubMed


To report a premarket multicenter trial to test the feasibility of a transvaginal silicone-coated polyester synthetic mesh sling in women with anatomic incontinence.
Fifty-one patients in four centers underwent transvaginal placement of a silicone-coated polyester synthetic mesh sling (American Medical Systems) during an 8-month period. Of the 51 patients, 31 were part of a prospective institutional review board-approved feasibility trial in three centers funded by American Medical Systems (group 1) and 20 underwent implantation by a single surgeon and their data were retrospectively reviewed (group 2). The studies were done concomitantly, and all slings were fixed transvaginally with bone anchors. All patients in group 1 were followed up at 4 weeks, 6 months, and 1 year (as applicable) with repeat questionnaires, physical examinations, and pad tests.
In group 1, 20 patients completed 6 months of follow-up. Ten patients (32%) required a second surgical procedure at an average of 183 days (range 68 to 343) postoperatively. Eight patients (26%) had vaginal extrusion of the mesh, one (3%) required sling lysis, and one (3%) required sling removal because of infection. In group 2, 8 patients (40%) underwent sling removal for vaginal extrusion at a mean of 160 days (range 83 to 214).
Transvaginally placed silicone-coated mesh slings used for the treatment of urinary incontinence demonstrated an unacceptably high vaginal extrusion rate in this study. Once identified, this study was immediately terminated, and this product was not marketed for this application in the United States.

9 Reads
  • Source
    • "Cindiff et al., noted that expanded PTFE meshes (Type II) were associated with a higher rate of mesh erosion then non-PTFE meshes (19% vs. 5%).[76] Silicone-coated polyethylene or polyester (Type IV) can also serve as a focus for chronic infection increasing the possibility of erosions and infections up to 23.8%.[7778] Yamada et al., noted high vaginal erosion with the use of polypropylene non-knitted, non-woven mesh (Obtape).[79] "
    [Show abstract] [Hide abstract]
    ABSTRACT: We reviewed the incidence, predisposing factors, presentation and management of complications related to the use of synthetic mesh in the management of stress urinary incontinence and pelvic organ prolapse repair. Immediate complications, such as bleeding, hematoma, injury to adjacent organs during placement of mesh and complication of voiding dysfunction are not discussed in this review, since they are primarily related to technique. A PubMed search of related articles published in English was done from April 2008 to March 2011. Key words used were urinary incontinence, mesh, complications, midurethral sling, anterior prolapse, anterior vaginal repair, pelvic organ prolapse, transvaginal mesh, vault prolapse, midurethral slings, female stress urinary incontinence, mesh erosion, vaginal mesh complications, and posterior vaginal wall prolapse. Since there were very few articles dealing with the management of mesh-related complications in the period covered in the search we extended the search from January 2005 onwards. Articles were selected to fit the scope of the topic. In addition, landmark publications and Manufacturer and User Facility Device Experience (MAUDE) data (FDA website) were included on the present topic. A total of 170 articles were identified. The use of synthetic mesh in sub-urethral sling procedures is now considered the standard for the surgical management of stress urinary incontinence. Synthetic mesh is being increasingly used in the management of pelvic organ prolapse. While the incidence of extrusion and erosion with mid-urethral sling is low, the extrusion rate in prolapse repair is somewhat higher and the use in posterior compartment remains controversial. When used through the abdominal approach the extrusion and erosion rates are lower. The management of mesh complication is an individualized approach. The choice of the technique should be based on the type of mesh complication, location of the extrusion and/or erosion, its magnitude, severity and potential recurrence of pelvic floor defect.
    Full-text · Article · Apr 2012 · Indian Journal of Urology
  • [Show abstract] [Hide abstract]
    ABSTRACT: In the past decade, sling surgery has become the preferred technique for the management of female stress urinary incontinence. A greater understanding of the pathogenesis of stress urinary incontinence and a greater durability and effectiveness for sling surgery has allowed this technique to become the benchmark for treatment of female stress urinary incontinence. As a consequence, a multitude of products have been developed using various techniques and materials to perform sling surgery. This article reviews the materials and techniques available and the complications associated with each. Most importantly, the outcomes are discussed so that the readers can best understand the impact of these surgeries on our patients.
    No preview · Article · Nov 2004 · Current Urology Reports
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Radiopaque polymeric microspheres have a potential as new bulking agents for treatment of stress urinary incontinence (SUI). The advantage over existing bulking agents lies in their X-ray visibility in situ; other polymeric bulking agents (e.g., PTFE or silicone rubbers) are practically radiolucent (i.e., incapable of absorbing X-radiation). Radiopacity is useful in practice because of the high spatial accuracy of X-ray imaging. For instance, X-ray fluoroscopy can be used to assess possible migration of the bulking agent over time or to provide guidance in cases in which a second injection of a bulking agent is necessary (repeated treatment of SUI). Biocompatibility of injected radiopaque microspheres was investigated in vivo by using the mouse as a model. Microspheres were injected subcutaneously (9 animals) or intramuscularly (9 animals), and follow-up was 8 days or 3 months. X-ray fluoroscopy gave clear images of the microspheres as an ensemble, and it was found that no migration occurred during 3 months. Histopathology confirmed that all microspheres stayed close to the site of the injection. The microspheres appeared to be well tolerated; only a few giant cells, manifesting a mild inflammatory reaction, were encountered. At 3 months, capillary blood vessels were observed throughout the microsphere beds, and macrophages and fibroblast cells were seen in between the microspheres. This is encouraging with respect to the intended application, although it must be acknowledged that the data refer merely to a mouse model. Further experiments with larger, more representative models (rabbit and goat) are in progress.
    Full-text · Article · Jun 2005 · Journal of Biomedical Materials Research Part A
Show more