Extracellular ATP determines 11 beta-hydroxysteroid dehydrogenase type 2 activity via purinergic receptors

Department of Nephrology/Hypertension, University Hospital Berne, Berne, Switzerland.
Journal of the American Society of Nephrology (Impact Factor: 9.34). 01/2006; 16(12):3507-16. DOI: 10.1681/ASN.2005010108
Source: PubMed


Hypertension and sodium retention are features of a diminished 11beta-hydroxysteroid dehydrogenase type 2 (11beta-HSD2). The activity of this enzyme is reduced in various disease states with abnormal renal sodium retention and hypertension, including preeclampsia. ATP release to the extracellular compartment is observed with shear stress, inflammation, and placental ischemia. It was hypothesized that ATP downregulates 11beta-HSD2 activity. For that purpose, cell lines from different tissues that previously were used to study the regulation of 11beta-HSD2 were investigated: JEG-3, a vascular trophoblastic; LLCPK1, a renal tubular; and SW620, a colonic epithelial cell line. The 11beta-HSD2 activity, assessed by the conversion of 3H-cortisol to cortisone, was reversibly reduced during incubation with ATP or its stable analogue ATPgammaS in intact JEG-3 and LLCPK1, but not in SW620 cells. In JEG-3 cells, the purinergic antagonist pyridoxalphosphate-6-azophenyl-2',4'-disulphonic acid but not suramin reversed the inhibition. Incubation with UTP and ADP and their degradation products including adenosine and alpha,beta-methylene-ATP did not inhibit 11beta-HSD2 activity. In contrast, 11beta-HSD2 activity increased almost 2.5-fold after incubation with 2'-methylthio-ATP. This indicates a bidirectional regulation by nucleotides via purinergic receptors. In JEG-3 cells, ATP/ATPgammaS did not alter 11beta-HSD2 promoter activity but reduced 11beta-HSD2 protein and mRNA concentration and half-life, suggesting a posttranscriptional regulation. In conclusion, ATP inhibits cell type specifically via purinergic receptors the expression and activity of the 11beta-HSD2 by a posttranscriptional mechanism.

Download full-text


Available from: Brigitte M Frey, Dec 30, 2013
  • Source
    • "Protein extraction and Western blot analyses were performed as reported earlier [16]. Briefly, nuclear extracts were isolated with the CelLytic NuCLEAR Extraction protocol (Sigma Chemicals, Buchs, Switzerland). "
    [Show abstract] [Hide abstract]
    ABSTRACT: 11β-Hydroxysteroid dehydrogenases (11beta-HSD) modulate mineralocorticoid receptor transactivation by glucocorticoids and regulate access to the glucocorticoid receptor. The isozyme 11beta-HSD2 is selectively expressed in mineralocorticoid target tissues and its activity is reduced in various disease states with abnormal sodium retention and hypertension, including the apparent mineralocorticoid excess. As 50% of patients with essential hypertension are insulin resistant and hyperinsulinemic, we hypothesized that insulin downregulates the 11beta-HSD2 activity. In the present study we show that insulin reduced the 11beta-HSD2 activity in cancer colon cell lines (HCT116, SW620 and HT-29) at the transcriptional level, in a time and dose dependent manner. The downregulation was reversible and required new protein synthesis. Pathway analysis using mRNA profiling revealed that insulin treatment modified the expression of the transcription factor family C/EBPs (CCAAT/enhancer-binding proteins) but also of glycolysis related enzymes. Western blot and real time PCR confirmed an upregulation of C/EBP beta isoforms (LAP and LIP) with a more pronounced increase in the inhibitory isoform LIP. EMSA and reporter gene assays demonstrated the role of C/EBP beta isoforms in HSD11B2 gene expression regulation. In addition, secretion of lactate, a byproduct of glycolysis, was shown to mediate insulin-dependent HSD11B2 downregulation. In summary, we demonstrate that insulin downregulates HSD11B2 through increased LIP expression and augmented lactate secretion. Such mechanisms are of interest and potential significance for sodium reabsorption in the colon.
    Full-text · Article · Aug 2014 · PLoS ONE
  • [Show abstract] [Hide abstract]
    ABSTRACT: Moderately elevated maternal cortisol levels late in gestation cause enlargement of the fetal sheep heart. We have used quantitative real-time PCR to examine expression of candidate genes in fetal hearts from mothers in whom cortisol levels were increased (by infusion of 1 mg cortisol.kg(-1).day(-1)) or decreased (by adrenalectomy and replacement to 0.5 mg cortisol.kg(-1).day(-1)) from 115 to 130 days gestation. Control ewes were not treated with steroid. Expression of mineralocorticoid receptor (MR), glucocorticoid receptor (GR), 11beta-hydroxysteroid dehydrogenases 1 and 2 (11beta-HSD1 and -2), IGF I and II, IGF receptors 1 and 2 (IGF-1R and IGF-2R), endothelial nitric oxide synthase, VEGF, myotrophin, angiotensinogen, the angiotensin receptors 1 and 2 (AT1R and AT2R), and the angiotensin converting enzymes 1 and 2 were measured. MR mRNA abundance in fetal hearts was found to be similar to that in adult kidney and hippocampus. Although there were no significant changes in most genes, 11beta-HSD2 and IGF-1R expression were significantly decreased in the high cortisol group and 11beta-HSD2 expression negatively correlated to left ventricular wall thickness. There was also a significant change in the ratio of AT receptor expression, with increased AT2R and decreased AT1R in the high cortisol group. MR, GR, and 11beta-HSD1 immunoreactivity was found in cardiomyocytes and cardiac blood vessels in 126-128 day fetal sheep; in contrast 11beta-HSD2 staining was predominantly in blood vessels. These results indicate that cortisol could indeed act in the fetal heart to induce enlargement and suggest that the renin-angiotensin system may play a role.
    No preview · Article · Jan 2007 · AJP Regulatory Integrative and Comparative Physiology
  • [Show abstract] [Hide abstract]
    ABSTRACT: The ability to utilize cell cultures to predict the effects of drugs and other compounds in in vivo models is an invaluable tool. Various studies have investigated the effects of kidney epithelial cells to various agents; however there are few studies that compare an in vitro to an in vivo environment. The specific objective of this study was to investigate the pathophysiological effects of Cortisol (CORT) on the proliferation and viability of Rhesus monkey kidney epithelial cells (RMKEC) in vitro. Twenty-four wells were plated with RMKEC and divided into four equal groups. Cells were treated with 10microL of CORT 5 microg/dl, CORT 20 microg/dl, or CORT 50 microg/d1 at 24, 48, and 72 hours. Epithelial damage was evident 24 after receiving a supraphysiological dose of cort, with increased hydrophic effects and alterations in cellular metabolism. The overall histological and cytological data suggest that test compounds tested in tissue culture provide a correlation as to how they will perform in vivo. Testing in compounds in vitro will allow the investigator to establish the IC50's of the test compounds as well as calculate the number of animals needed to reach statistical power.
    No preview · Article · Feb 2007 · Biomedical sciences instrumentation
Show more