Article

Three genomes differentially contribute to the biosynthesis of benzoxazinones in hexaploid wheat. Proc Natl Acad Sci USA

Divisions of Applied Biosciences and Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan.
Proceedings of the National Academy of Sciences (Impact Factor: 9.67). 12/2005; 102(45):16490-5. DOI: 10.1073/pnas.0505156102
Source: PubMed

ABSTRACT

Hexaploid wheat (Triticum aestivum) accumulates benzoxazinones (Bxs) as defensive compounds. Previously, we found that five Bx biosynthetic genes, TaBx1-TaBx5, are located on each of the three genomes (A, B, and D) of hexaploid wheat. In this study, we isolated three homoeologous cDNAs of each TaBx gene to estimate the contribution of individual homoeologous TaBx genes to the biosynthesis of Bxs in hexaploid wheat. We analyzed their transcript levels by homoeolog- or genome-specific quantitative RT-PCR and the catalytic properties of their translation products by kinetic analyses using recombinant TaBX enzymes. The three homoeologs were transcribed differentially, and the ratio of the individual homoeologous transcripts to total homoeologous transcripts also varied with the tissue, i.e., shoots or roots, as well as with the developmental stage. Moreover, the translation products of the three homoeologs had different catalytic properties. Some TaBx homoeologs were efficiently transcribed, but the translation products showed only weak enzymatic activities, which inferred their weak contribution to Bx biosynthesis. Considering the transcript levels and the catalytic properties collectively, we concluded that the homoeologs on the B genome generally contributed the most to the Bx biosynthesis in hexaploid wheat, especially in shoots. In tetraploid wheat and the three diploid progenitors of hexaploid wheat, the respective transcript levels of the TaBx homoeologs were similar in ratio to those observed in hexaploid wheat. This result indicates that the genomic bias in the transcription of the TaBx genes in hexaploid wheat originated in the diploid progenitors and has been retained through the polyploidization.

Download full-text

Full-text

Available from: Atsushi Ishihara
    • "Some of the wheat C2H2 ZFP family members could be orthologs of Arabidopsis ZFPs (ZAT7 or ZAT12) or of cereal ZFPs (ZFP36, ZFP179 and ZFP182) that are important in the response to oxidative stress by regulating stress-responsive genes such as ascorbate peroxidase, superoxide dismutase, WRKY transcription factors and Mitogen-activated Protein Kinase genes. Despite triplication of many genes in hexaploid wheat, transcriptional divergence of homoeologous genes has been reported (Nomura et al. 2005; Hu et al. 2011). Polyploidization events provide opportunities for duplicated genes to diverge in different evolutionary ways such as subfunctionalization, neofunctionalization and nonfunctionalization (Wendel 2000). "
    [Show abstract] [Hide abstract]
    ABSTRACT: The C1-2i wheat Q-type C2H2 zinc finger protein (ZFP) transcription factor subclass has been reported to play important roles in plant stress responses. This subclass of ZFPs has not been studied in hexaploid wheat (Triticum aestivum) and we aimed to identify all members of this subclass and evaluate their responses to different abiotic stresses causing oxidative stress. Exploiting the recently published wheat draft genome sequence, we identified 53 members (including homoeologs from A, B and D genomes) of the C1-2i wheat Q-type C2H2 ZFPs (TaZFPs) representing 21 genes. Evolution analysis revealed that 9 TaZFPs members are directly inherited from the parents Triticum urartu and Aegilops tauschii, while 15 diverged through neoploidization events. This TaZFP subclass is responsive to the oxidative stress generator H2O2 and to high light, drought stress and flooding. Most TaZFPs are responsive to H2O2 (37/53), high light (44/53), flooding (31/53) or drought (37/53); 32 TaZFPs were up-regulated by at least 3 stresses and 16 were responsive to all stresses tested. A large number of these TaZFPs were physically mapped on different wheat draft genome sequences with known markers useful for QTL mapping. Our results show that the C1-2i subclass of TaZFPs is associated with responses to different abiotic stresses and that most TaZFPs (30/53 or 57 %) are located on group 5 chromosomes known to be involved in environment adaptation. Detailed characterization of these novel wheat TaZFPs and their association to QTL or eQTL may help to design wheat cultivars with improved tolerance to abiotic stress.
    No preview · Article · Dec 2015 · Molecular Genetics and Genomics
  • Source
    • "As from the hexaploid wheat ' Chinese Spring ' and the 2BS . 2RL wheat - rye translocation , the expression of some of the transcripts was found to be significantly higher or lower in the hexaploid wheat than in the diploid progenitor . Unequal expression of homoeologous genes and changes in homoeolog bias have been observed in polyploid species ( Nomura et al . , 2005 ; Hovav et al . , 2008 ) . We can speculate that some specific genome pref - erential transcripts exhibit expression changes in hexaploid wheat including chromosome translocation lines . The target genomic region for over two thousand tran - scripts that were identified as preferentially hybridizing either ' Chinese Spring ' or 2BS . 2R"
    [Show abstract] [Hide abstract]
    ABSTRACT: Wheat-rye translocations are widely used in wheat breeding to confer resistance against abiotic and biotic stress. Studying gene expression in wheat-rye translocations is complicated due to the presence of homoeologous genes in hexaploid wheat and high levels of synteny between wheat and rye chromatin. To distinguish transcripts expressed from each of the three wheat genomes and those from rye chromatin, genomic probes generated from diploid progenitors of wheat and rye were synthesized on a custom array. A total of 407 transcripts showed homoeologous genome (‘A’, ‘B’ or ‘D’ genome)- or rye genome (‘R’)-specific differential expression, based on unequal values of probe hybridization. In a 2BS.2RL wheat-rye translocation, thirteen of the 407 transcripts showed preferential expressions from rye chromatin. As well as quantifying variation in homoeologous transcript in wheat-rye translocations, this study also provides a potential aid to examine the contribution of the subgenomes to complex allohexapolyploids.
    Full-text · Article · Feb 2015 · Genes & Genetic Systems
  • Source
    • "As common wheat is hexaploid (2n = 42) that contains three subgenomes, namely A, B, and D; and seven pairs of homoeologous chromosomes per subgenome, each gene has three copies. Previous studies have shown that the genomic contributions to the total expression of a target gene vary with tissues and developmental stages (Nomura et al., 2005; Deol et al., 2013). Therefore, identifying and characterizing the homoeologs of a candidate gene from each of the three genomes, and elucidating the degree of their contributions to the total expression of a target gene are important for detailed dissection of the underlying molecular mechanisms regulating seed dormancy. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Seed dormancy is a mechanism underlying the inability of viable seeds to germinate under optimal environmental conditions. To achieve rapid and uniform germination, wheat and other cereal crops have been selected against dormancy. As a result, most of the modern commercial cultivars have low level of seed dormancy and are susceptible to preharvest sprouting when wet and moist conditions occur prior to harvest. As it causes substantial loss in grain yield and quality, preharvest sprouting is an ever-present major constraint to the production of wheat. The significance of the problem emphasizes the need to incorporate an intermediate level of dormancy into elite wheat cultivars, and this requires detailed dissection of the mechanisms underlying the regulation of seed dormancy and preharvest sprouting. Seed dormancy research in wheat often involves after-ripening, a period of dry storage during which seeds lose dormancy, or comparative analysis of seeds derived from dormant and non-dormant cultivars. The increasing development in wheat genomic resources along with the application of transcriptomics, proteomics, and metabolomics approaches in studying wheat seed dormancy have extended our knowledge of the mechanisms acting at transcriptional and post-transcriptional levels. Recent progresses indicate that some of the molecular mechanisms are associated with hormonal pathways, epigenetic regulations, targeted oxidative modifications of seed mRNAs and proteins, redox regulation of seed protein thiols, and modulation of translational activities. Given that preharvest sprouting is closely associated with seed dormancy, these findings will significantly contribute to the designing of efficient strategies for breeding preharvest sprouting tolerant wheat.
    Full-text · Article · Sep 2014 · Frontiers in Plant Science
Show more