MLH1 Germline Epimutations as a Factor in Hereditary Nonpolyposis Colorectal Cancer

University of Newcastle, Newcastle, New South Wales, Australia
Gastroenterology (Impact Factor: 16.72). 11/2005; 129(5):1392-9. DOI: 10.1053/j.gastro.2005.09.003
Source: PubMed


Hereditary nonpolyposis colorectal cancer (HNPCC) is caused by heterozygous germline sequence mutations of DNA mismatch repair genes, most frequently MLH1 or MSH2. A novel molecular mechanism for HNPCC has recently been suggested by the finding of individuals with soma-wide monoallelic hypermethylation of the MLH1 gene promoter. In this study, we determined the frequency and role of germline epimutations of MLH1 in HNPCC.
A cohort of 160 probands from HNPCC families who did not harbor germline sequence mutations in the mismatch repair genes were screened for methylation of the MLH1 and EPM2AIP1 promoters by combined bisulfite and restriction analyses. Allelic expression and family transmission of MLH1 were determined using polymorphisms in intron 4 and the 3' untranslated region.
One of 160 individuals had monoallelic MLH1 hypermethylation in peripheral blood, hair follicles, and buccal mucosa, indicative of a soma-wide alteration. Monoallelic transcription of the paternal MLH1 allele was shown using a heterozygous expressed polymorphism within the 3' untranslated region. The hypermethylated allele was maternally transmitted, however, the mother and siblings who inherited the same maternal homologue were unmethylated at MLH1, suggesting the epimutation arose as a de novo event.
Germline MLH1 epimutations are functionally equivalent to an inactivating mutation and produce a clinical phenotype that resembles HNPCC. Inheritance of epimutations is weak, so family history is not a useful guide for screening. Germline epimutations should be suspected in younger individuals without a family history who present with a microsatellite unstable tumor showing loss of MLH1 expression.

13 Reads
  • Source
    • "These tumors are MMR deficient, due to a second hit to the MMR gene, and show microsatellite instability and loss of expression of the relevant MMR protein.2 Germline sequence mutations in the MMR genes are not found in 25–30% of patients with suspected Lynch syndrome, and a proportion of these mutation-negative individuals have been shown to carry constitutional epimutations of the MLH1 or MSH2 genes.3,4,5,6,7,8 Constitutional epimutations manifest as promoter methylation and loss of transcription from one genetic allele within normal somatic tissues.9 "
    [Show abstract] [Hide abstract]
    ABSTRACT: Purpose: Constitutional MLH1 epimutations manifest as promoter methylation and silencing of the affected allele in normal tissues, predisposing to Lynch syndrome–associated cancers. This study investigated their frequency and inheritance. Methods: A total of 416 individuals with a colorectal cancer showing loss of MLH1 expression and without deleterious germline mutations in MLH1 were ascertained from the Colon Cancer Family Registry (C-CFR). Constitutive DNA samples were screened for MLH1 methylation in all 416 subjects and for promoter sequence changes in 357 individuals. Results: Constitutional MLH1 epimutations were identified in 16 subjects. Of these, seven (1.7%) had mono- or hemi-allelic methylation and eight had low-level methylation (2%). In one subject the epimutation was linked to the c.-27C>A promoter variant. Testing of 37 relatives from nine probands revealed paternal transmission of low-level methylation segregating with a c.+27G>A variant in one case. Five additional probands had a promoter variant without an MLH1 epimutation, with three showing diminished promoter activity in functional assays. Conclusion: Although rare, sequence changes in the regulatory region of MLH1 and aberrant methylation may alone or together predispose to the development of cancer. Screening for these changes is warranted in individuals who have a negative germline sequence screen of MLH1 and loss of MLH1 expression in their tumor.
    Full-text · Article · Aug 2012 · Genetics in medicine: official journal of the American College of Medical Genetics
  • Source
    • "Epimutation is not always inherited and has also been shown to have a hereditary form that does not follow Mendelian inheritance (4–7). Epimutation disappears in spermatogenesis, and may by inherited from the mother alone, suggesting that disappearance during oogenesis is unlikely (7,8). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Epimutation is defined as abnormal transcriptional repression of active genes and/or abnormal activation of usually repressed genes caused by errors in epigenetic gene repression. Epimutation arises in somatic cells and the germline, and constitutional epimutation may also occur. Epimutation is the first step of tumorigenesis and can be a direct cause of carcinogenesis. Cancers associated with epimutation include Lynch syndrome (hereditary non-polyposis colorectal cancer, HNPCC), chronic lymphocytic leukemia, breast cancer and ovarian cancer. Epimutation has been shown for many tumor suppressor genes, including RB, VHL, hMLH1, APC and BRCA1, in sporadic cancers. Methylation has recently been shown in DNA from normal tissues and peripheral blood in cases of sporadic colorectal cancer and many studies show constitutive epimutation in cancers. Epimutation of DNA mismatch repair (MMR) genes (BRCA1, hMLH1 and hMSH2) involved in development familial cancers has also been found. These results have led to a focus on epimutation as a novel oncogenic mechanism.
    Full-text · Article · Jun 2012 · International Journal of Oncology
  • Source
    • "(Gazzoli et al., 2002; Hitchins et al., 2005; Miyakura et al., 2004; Suter et al., 2004 "
    [Show abstract] [Hide abstract]
    ABSTRACT: Constitutional epimutations of tumor suppressor genes manifest as promoter methylation and transcriptional silencing of a single allele in normal somatic tissues, thereby predisposing to cancer. Constitutional MLH1 epimutations occur in individuals with young-onset cancer and demonstrate non-Mendelian inheritance through their reversal in the germline. We report a cancer-affected family showing dominant transmission of soma-wide highly mosaic MLH1 methylation and transcriptional repression linked to a particular genetic haplotype. The epimutation was erased in spermatozoa but reinstated in the somatic cells of the next generation. The affected haplotype harbored two single nucleotide substitutions in tandem; c.-27C > A located near the transcription initiation site and c.85G > T. The c.-27C > A variant significantly reduced transcriptional activity in reporter assays and is the probable cause of this epimutation.
    Full-text · Article · Aug 2011 · Cancer cell
Show more