Article

Molecular Analysis and Organization of the B Operon in Staphylococcus aureus

Department of Medical Microbiology, University of Zürich, Switzerland.
Journal of Bacteriology (Impact Factor: 2.81). 01/2006; 187(23):8006-19. DOI: 10.1128/JB.187.23.8006-8019.2005
Source: PubMed

ABSTRACT

The alternative sigma factor σB of Staphylococcus aureus controls the expression of a variety of genes, including virulence determinants and global regulators. Genetic manipulations
and transcriptional start point (TSP) analyses showed that the sigB operon is transcribed from at least two differentially controlled promoters: a putative σA-dependent promoter, termed sigBp1, giving rise to a 3.6-kb transcript covering sa2059-sa2058-rsbU-rsbV-rsbW-sigB, and a σB-dependent promoter, sigBp3, initiating a 1.6-kb transcript covering rsbV-rsbW-sigB. TSP and promoter-reporter gene fusion experiments indicated that a third promoter, tentatively termed sigBp2 and proposed to lead to a 2.5-kb transcript, including rsbU-rsbV-rsbW-sigB, might govern the expression of the sigB operon. Environmental stresses, such as heat shock and salt stress, induced a rapid response within minutes from promoters
sigBp1 and sigBp3. In vitro, the sigBp1 promoter was active in the early growth stages, while the sigBp2 and sigBp3 promoters produced transcripts throughout the growth cycle, with sigBp3 peaking around the transition state between exponential growth and stationary phase. The amount of sigB transcripts, however, did not reflect the concentration of σB measured in cell extracts, which remained constant over the entire growth cycle. In a guinea pig cage model of infection,
sigB transcripts were as abundant 2 and 8 days postinoculation as values found in vitro, demonstrating that sigB is indeed transcribed during the course of infection. Physical interactions between staphylococcal RsbU-RsbV, RsbV-RsbW,
and RsbW-σB were inferred from a yeast (Saccharomyces cerevisiae) two-hybrid approach, indicating the presence of a partner-switching mechanism in the σB activation cascade similar to that of Bacillus subtilis. The finding that overexpression of RsbU was sufficient to trigger an immediate and strong activation of σB, however, signals a relevant difference in the regulation of σB activation between B. subtilis and S. aureus in the cascade upstream of RsbU.

Download full-text

Full-text

Available from: Jan Kormanec
  • Source
    • "Furthermore, we detected a decrease in the expression level of the alkaline shock protein 23 (asp23) gene. In S. aureus,asp23 transcription is typically used as a marker for the activity of the alternative sigma factor Sigma B[35], which responds to several stress conditions by transiently increasing its activity[36,37], suggesting that kendomycin exerts a negative effect on Sigma B activity. We further investigated the effect of kendomycin on the expression levels of two additional genes that encode proteins involved in the oxidative stress response in S. aureus, KatA and alkyl hydroperoxide reductase (AhpC)[38], which are regulated by the peroxide response regulator PerR[39]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The emergence of bacteria that are resistant to many currently used drugs emphasizes the need to discover and develop new antibiotics that are effective against such multi-resistant strains. Kendomycin is a novel polyketide that has a unique quinone methide ansa structure and various biological properties. This compound exhibits strong antibacterial activity against Gram-negative and Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus (MRSA). Despite the promise of kendomycinin in several therapeutic areas, its mode of action has yet to be identified.
    Full-text · Article · Jan 2016 · PLoS ONE
  • Source
    • "The S. aureus sigma B operon resembles that of the homologous B. subtilis operon. It contains σB, an anti-σB factor RsbW, an anti-anti-σB factor RsbV, and RsbU, a Mn2+-dependent phosphatase that positively controls σB activity by dephosphorylating RsbV [80], [81]. The sigma B regulon includes genes directly up-regulated by σB and genes indirectly regulated via σB-dependent expression of regulatory factors such as the SarA transcription factor [76], [77]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Staphylococcus aureus is a leading pathogen for animals and humans, not only being one of the most frequently isolated bacteria in hospital-associated infections but also causing diseases in the community. To coordinate the expression of its numerous virulence genes for growth and survival, S. aureus uses various signalling pathways that include two-component regulatory systems, transcription factors, and also around 250 regulatory RNAs. Biological roles have only been determined for a handful of these sRNAs, including cis, trans, and cis-trans acting RNAs, some internally encoding small, functional peptides and others possessing dual or multiple functions. Here we put forward an inventory of these fascinating sRNAs; the proteins involved in their activities; and those involved in stress response, metabolisms, and virulence.
    Full-text · Article · Dec 2013 · PLoS Pathogens
  • Source
    • "Under stress conditions, RsbV is dephosphorylated by one or more specific PP2C-type phosphatases, resulting in the sequestration of RsbW and the activation of σB. This part of this regulatory is conserved in Bacilli (van Schaik et al., 2005), Staphylococcus aureus (Palma and Cheung, 2001; Senn et al., 2005; Pané-Farré et al., 2006) and L. monocytogenes (Wiedmann et al., 1998; Ferreira et al., 2004). However, there are considerable differences in the upstream part of the σB activation pathway (Ferreira et al., 2004; van Schaik et al., 2004a), reflecting differences in the mechanisms of stress sensing and signaling in the various bacteria. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Microorganisms are able to adapt to different environments and evolve rapidly, allowing them to cope with their new environments. Such adaptive response and associated protections toward other lethal stresses, is a crucial survival strategy for a wide spectrum of microorganisms, including food spoilage bacteria, pathogens, and organisms used in functional food applications. The growing demand for minimal processed food yields to an increasing use of combination of hurdles or mild preservation factors in the food industry. A commonly used hurdle is low pH which allows the decrease in bacterial growth rate but also the inactivation of pathogens or spoilage microorganisms. Bacillus cereus is a well-known food-borne pathogen leading to economical and safety issues in food industry. Because survival mechanisms implemented will allow bacteria to cope with environmental changes, it is important to provide understanding of B. cereus stress response. Thus this review deals with the adaptive traits of B. cereus cells facing to acid stress conditions. The acid stress response of B. cereus could be divided into four groups (i) general stress response (ii) pH homeostasis, (iii) metabolic modifications and alkali production and (iv) secondary oxidative stress response. This current knowledge may be useful to understand how B. cereus cells may cope to acid environment such as encountered in food products and thus to find some molecular biomarkers of the bacterial behavior. These biomarkers could be furthermore used to develop new microbial behavior prediction tools which can provide insights into underlying molecular physiological states which govern the behavior of microorganisms and thus opening the avenue toward the detection of stress adaptive behavior at an early stage and the control of stress-induced resistance throughout the food chain.
    Full-text · Article · Oct 2013 · Frontiers in Microbiology
Show more