Focal adhesion kinase silencing augments docetaxel-mediated apoptosis in ovarian cancer cells

University of North Carolina at Chapel Hill, North Carolina, United States
Clinical Cancer Research (Impact Factor: 8.72). 01/2006; 11(24 Pt 1):8829-36. DOI: 10.1158/1078-0432.CCR-05-1728
Source: PubMed


Docetaxel causes cell death through induction of apoptosis; however, cell death characteristics for docetaxel have not yet been fully elucidated. We examined the role of focal adhesion kinase (FAK) cleavage in docetaxel-mediated apoptosis.
FAK degradation after treatment with docetaxel was determined in both taxane-sensitive (HeyA8 and SKOV3) and taxane-resistant (HeyA8-MDR and SKOV3-TR) ovarian cancer cell lines by Western blot analysis. Cell growth was determined with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. FAK-targeting small interfering RNA (siRNA) was used to decrease FAK expression. Apoptosis and caspase activity were determined using commercially available kits.
SKOV3 and HeyA8 cell lines were both sensitive to docetaxel (IC50 levels, 1-6.2 nmol/L), whereas the SKOV3-TR and HeyA8-MDR cells were resistant (IC50>or=250 nmol/L for both). Docetaxel induced high rates of apoptosis in SKOV3 and HeyA8 cells (84% and 66% apoptosis, respectively) but minimal apoptosis (5-8%) in SKOV3-TR and HeyA8-MDR cells. Similarly, FAK was cleaved in SKOV3 and HeyA8 cells in response to docetaxel treatment but unchanged in the resistant cells. Caspase-3 and caspase-8 activity also increased significantly in docetaxel-treated SKOV3 and HeyA8 cells but not in the taxane-resistant cells. DEVD-fmk (caspase-3 blocker) was able to block both FAK cleavage and apoptosis mediated by docetaxel in SKOV3 and HeyA8 cells. FAK siRNA transfection resulted in 70% to 90% decrease in FAK levels in all cell lines within 72 hours. FAK silencing augmented docetaxel-mediated growth inhibition (5- to 8-fold increase) and apoptosis in both of the taxane-sensitive and taxane-resistant cell lines.
Docetaxel induces FAK cleavage, mediated through activation of caspase-3, in taxane-sensitive ovarian cancer cells but not in taxane-resistant cells. The absence of FAK degradation may contribute to cell survival in taxane-resistant cells. FAK silencing promotes the in vitro efficacy of docetaxel in both taxane-sensitive and taxane-resistant cell lines and may serve as a novel therapeutic approach.

Full-text preview

Available from:
  • Source
    • "and this is associated with decreased overall patient survival [14] [15] [16]. In mouse models, FAK knockdown or inhibition decreases tumor size due in part to increased cell apoptosis [16] [17] [18] [19]. Small molecule ATP-competitive inhibitors of FAK are in various stages of development and testing [20] [21]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Focal adhesion kinase (FAK) is overexpressed in serous ovarian cancer. Loss of merlin, a product of the neurofibromatosis 2 tumor suppressor gene, is being evaluated as a biomarker for FAK inhibitor sensitivity in mesothelioma. Connections between merlin and FAK in ovarian cancer remain undefined. Nine human and two murine ovarian cancer cell lines were analyzed for growth in the presence of a small molecule FAK inhibitor (PF-271, 0.1 to 1μM) for 72h. Merlin was evaluated by immunoblotting and immunostaining of a human ovarian tumor tissue array. Growth of cells was analyzed in an orthotopic tumor model and evaluated in vitro after stable shRNA-mediated merlin knockdown. Greater than 50% inhibition of OVCAR8, HEY and ID8-IP ovarian carcinoma cell growth occurred with 0.1μM PF-271 in anchorage-independent (p<0.001) but not in adherent culture conditions. PF-271-mediated reduction in FAK Y397 phosphorylation occurred independently of growth inhibition. Suspended growth of OVCAR3, OVCAR10, IGROV1, IGROV1-IP, SKOV3, SKOV3-IP, A2780, and 5009-MOVCAR was not affected by 0.1μM PF-271. Merlin expression did not correlate with serous ovarian tumor grade or stage. PF-271 (30mg/kg, BID) did not inhibit 5009-MOVCAR tumor growth and merlin knockdown in SKOV3-IP and OVCAR10 cells did not alter suspended cell growth upon PF-271 addition. Differential responsiveness to FAK inhibitor treatment were observed. Intrinsic low merlin protein levels correlated with PF-271-mediated anchorage-independent growth inhibition, but reduction in merlin expression did not induce sensitivity to FAK inhibition. Merlin levels may be useful for patient stratification in FAK inhibitor trials.
    Full-text · Article · Apr 2014 · Gynecologic Oncology
  • Source
    • "Activation of FAK seems to be essential for anoikis resistance of epithelial cells without matrix contact. The involvement in anti-apoptotic functions and the ability to promote epithelial mesenchymal transition (EMT) has rendered FAK as a potential therapeutic target to inhibit tumor progression and metastasis [10-12]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Focal adhesion kinase (FAK) autophosphorylation seems to be a potential therapeutic target but little is known about the role and prognostic value of FAK and pFAK in epithelial ovarian cancer (EOC). Recently, we validated a gene signature classifying EOC patients into two subclasses and revealing genes of the focal adhesion pathway as significantly deregulated. FAK expression and pFAK-Y397 abundance were elucidated by immunohistochemistry and microarray analysis in 179 serous EOC patients. In particular the prognostic value of phosphorylated FAK (pFAK-Y397) and FAK in advanced stage EOC was investigated. Multiple Cox-regression analysis showed that high pFAK abundance was associated with improved overall survival (HR 0.54; p = 0.034). FAK was positive in a total of 92.2% (n = 165) and high pFAK abundance was found in 36.9% (n = 66). High pFAK abundance (36.9%; n = 66) was associated with either nodal positivity and/or distant metastasis (p = 0.030). Whole genome gene expression data revealed a connection of the FAK-pFAK-Y397 axis and the mTOR-S6K1 pathway, shown to play a major role in carcinogenesis. The role of pFAK-Y397 remains controversial: although high pFAK-Y397 abundance is associated with distant and lymph node metastases, it is independently associated with improved overall survival.
    Full-text · Article · Mar 2014 · Molecular Cancer
  • Source
    • "The role of FAK in regulating tumor cell migration and metastasis, in addition to a critical role in angiogenesis, make FAK an emerging therapeutic target (Infusino and Jacobson, 2012; Ma, 2011). Our data suggest there may be important mechanistic differences between siRNA based approaches (Halder et al., 2005; Han et al., 2010) and chemical based inhibitors of FAK kinase Fig. 8. FAK expression is required for vascular morphogenesis. (A) HUVECs co-infected with lentiviruses that coded for: control shRNA and GFP; FAK-39UTR shRNA and GFP; or FAK-39UTRshRNA and FAK (Rescue) were co-cultured with primary human fibroblasts for 21 days. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Focal adhesion kinase (FAK) is critically positioned to integrate signals from the extracellular matrix and cellular adhesion. It is essential for normal vascular development and has been implicated in a wide range of cellular functions including the regulation of cell proliferation, migration, differentiation, and survival. It is currently being actively targeted therapeutically using different approaches. We have used human endothelial cells as a model system to compare the effects of inhibiting FAK through several different approaches including dominant negatives, kinase inhibitors and shRNA. We find that manipulations of FAK signaling that result in inhibition of FAK 397 phosphorylation inhibit proliferation and migration. However, abolition of FAK expression using stable (shRNA) or transient (siRNA) approaches does not interfere with these cellular functions. The ability to regulate cell proliferation by FAK manipulation is correlated with the activation status of Rac, an essential signal for the regulation of cyclin-dependent kinase inhibitors. The knockdown of FAK, while not affecting cellular proliferation or migration, dramatically interferes with vascular morphogenesis and survival, mirroring in vivo findings. We propose a novel model of FAK signaling whereby one of the multifunctional roles of FAK as a signaling protein includes FAK as a phospho-regulated repressor of Rac activation, with important implications on interpretation of research experiments and therapeutic development.
    Full-text · Article · Aug 2012 · Biology Open
Show more