Increased pulmonary responses to acute ozone exposure in obese db/db mice

ArticleinAJP Lung Cellular and Molecular Physiology 290(5):L856-65 · June 2006with9 Reads
Impact Factor: 4.08 · DOI: 10.1152/ajplung.00386.2005 · Source: PubMed

Epidemiological studies indicate the incidence of asthma is increased in obese and overweight humans. Responses to ozone (O(3)), an asthma trigger, are increased in obese (ob/ob) mice lacking the satiety hormone leptin. The long form of leptin receptor (Ob-R(b)) is required for satiety; mice lacking this receptor (db/db mice) are also substantially obese. Here, wild-type (WT) and db/db mice were exposed to air or O(3) (2 ppm) for 3 h. Airway responsiveness, measured by the forced oscillation technique, was greater in db/db than WT mice after air exposure. O(3)-induced increases in pulmonary resistance and airway responsiveness were also greater in db/db mice. BALF eotaxin, IL-6, KC, and MIP-2 increased 4 h after O(3) exposure and subsided by 24 h, whereas protein and neutrophils continued to increase through 24 h. For each outcome, the effect of O(3) was significantly greater in db/db than WT mice. Previously published results obtained in ob/ob mice were similar except for O(3)-induced neutrophils and MIP-2, which were not different from WT mice. O(3) also induced pulmonary IL-1beta and TNF-alpha mRNA expression in db/db but not ob/ob mice. Leptin was increased in serum of db/db mice, and pulmonary mRNA expression of short form of leptin receptor (Ob-R(a)) was similar in db/db and WT mice. These data confirm obese mice have innate airway hyperresponsiveness and increased pulmonary responses to O(3). Differences between ob/ob mice, which lack leptin, and db/db mice, which lack Ob-R(b) but not Ob-R(a), suggest leptin, acting through Ob-R(a), can modify some pulmonary responses to O(3).