The contribution of transforming growth factor- and epidermal growth factor signalling to airway remodelling in chronic asthma

The Brooke Laboratories, Division of Infection, Inflammation and Repair, F Level South Lab & Path Block (888), Southampton General Hospital, Southampton SO16 6YD, UK.
European Respiratory Journal (Impact Factor: 7.64). 02/2006; 27(1):208-29. DOI: 10.1183/09031936.06.00130004
Source: PubMed


Asthma is increasing in prevalence in the developing world, affecting approximately 10% of the world's population. It is characterised by chronic lung inflammation and airway remodelling associated with wheezing, shortness of breath, acute bronchial hyperresponsiveness to a variety of innocuous stimuli and a more rapid decline in lung function over time. Airway remodelling, involving proliferation and differentiation of mesenchymal cells, particularly myofibroblasts and smooth muscle cells, is generally refractory to corticosteroids and makes a major contribution to disease chronicity. Transforming growth factor-beta is a potent profibrogenic factor whose expression is increased in the asthmatic airways and is a prime candidate for the initiation and persistence of airway remodelling in asthma. This review highlights the role of transforming growth factor-beta in the asthmatic lung, incorporating biosynthesis, signalling pathways and functional outcome. In vivo, however, it is the balance between transforming growth factor-beta and other growth factors, such as epidermal growth factor, which will determine the extent of fibrosis in the airways. A fuller comprehension of the actions of transforming growth factor-beta, and its interaction with other signalling pathways, such as the epidermal growth factor receptor signalling cascade, may enable development of therapies that control airway remodelling where there is an unmet clinical need.

Full-text preview

Available from:
  • Source
    • "Phosphorylated Smad2/3 binds to Smad4 and the complex then translocates to the nucleus. The activated Smad 2/3/4 trimer binds to Smad-binding elements in the regulatory regions of junB and c-Jun, and modulates transcription with other coactivators including the cAMP-response element binding protein (CBP)/p300 histone acetyltransferases [33]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: A pathological hallmark of asthma is chronic injury and repair, producing dysfunction of the epithelial barrier function. In this setting, increased oxidative stress, growth factor- and cytokine stimulation, together with extracellular matrix contact produces transcriptional reprogramming of the epithelial cell. This process results in epithelial-mesenchymal transition (EMT), a cellular state associated with loss of epithelial polarity, expression of mesenchymal markers, enhanced mobility and extracellular matrix remodeling. As a result, the cellular biology of the EMT state produces characteristic changes seen in severe, refractory asthma: myofibroblast expansion, epithelial trans-differentiation and subepithelial fibrosis. EMT also induces profound changes in epithelial responsiveness that affects innate immune signaling that may have impact on the adaptive immune response and effectiveness of glucocorticoid therapy in severe asthma. We discuss how this complex phenotype is beginning to be understood using systems biology-level approaches through perturbations coupled with high throughput profiling and computational modeling. Understanding the distinct changes induced by EMT at the systems level may provide translational strategies to reverse the altered signaling and physiology of refractory asthma.
    Full-text · Article · Jun 2014 · World Allergy Organization Journal
  • Source
    • "It is initiated by extracellular signals, such as connection with extracellular matrix; collagen or hyaluronic acids and by growth factors; TGF-β and EGF. Among those signals, TGF-β is established how it plays important role in airway remodeling and EMT (Phipps et al., 2004; Boxall et al., 2006; Hackett et al., 2009). TGF-β induces the expression of α-smooth muscle actin and vimentin and the downregulation of E-cadherin expression, inducing the dissolution of polarity of the epithelial cell and intercellular adhesion. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Asthma is a serious health and socioeconomic issue all over the world, affecting more than 300 million individuals. The disease is considered as an inflammatory disease in the airway, leading to airway hyperresponsiveness, obstruction, mucus hyper-production and airway wall remodeling. The presence of airway inflammation in asthmatic patients has been found in the 19th century. As the information in patients with asthma increase, paradigm change in immunology and molecular biology have resulted in an extensive evaluation of inflammatory cells and mediators involved in the pathophysiology of asthma. Moreover, it is recognized that airway remodeling into detail, characterized by thickening of the airway wall, can be profound consequences on the mechanics of airway narrowing and contribute to the chronic progression of the disease. Epithelial to mesenchymal transition (EMT) plays an important role in airway remodeling. These epithelial and mesenchymal cells cause persistence of the inflammatory infiltration and induce histological changes in the airway wall, increasing thickness of the basement membrane, collagen deposition and smooth muscle hypertrophy and hyperplasia. Resulting of airway inflammation, airway remodeling leads to the airway wall thickening and induces increased airway smooth muscle mass, which generate asthmatic symptoms. Asthma is classically recognized as the typical Th2 disease, with increased IgE levels and eosinophilic inflammation in the airway. Emerging Th2 cytokines modulates the airway inflammation, which induces airway remodeling. Biological agents, which have specific molecular targets for these Th2 cytokines, are available and clinical trials for asthma are ongoing. However, the relatively simple paradigm has been doubted because of the realization that strategies designed to suppress Th2 function are not effective enough for all patients in the clinical trials. In the future, it is required to understand more details for phenotypes of ast
    Full-text · Article · Sep 2013 · Frontiers in Microbiology
  • Source
    • "In this regard, we did not detect hrGFP positivity in any cells outside of the smooth muscle compartments after allergen challenge by fluorescent microscopy (Fig. 2E). Further, we only collected cells with relatively high levels of hrGFP expression (Fig. 1B), thereby avoiding the potential contamination of myofibroblast cells that are known to express low levels of αSMA [12]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Phenotypes of lung smooth muscle cells in health and disease are poorly characterized. This is due, in part, to a lack of methodologies that allow for the independent and direct isolation of bronchial smooth muscle cells (BSMCs) and vascular smooth muscle cells (VSMCs) from the lung. In this paper, we describe the development of a bi-fluorescent mouse that permits purification of these two cell populations by cell sorting. By subjecting this mouse to an acute allergen based-model of airway inflammation that exhibits many features of asthma, we utilized this tool to characterize the phenotype of so-called asthmatic BSMCs. First, we examined the biophysical properties of single BSMCs from allergen sensitized mice and found increases in basal tone and cell size that were sustained ex vivo. We then generated for the first time, a comprehensive characterization of the global gene expression changes in BSMCs isolated from the bi-fluorescent mice with allergic airway inflammation. Using statistical methods and pathway analysis, we identified a number of differentially expressed mRNAs in BSMCs from allergen sensitized mice that code for key candidate proteins underlying changes in matrix formation, contractility, and immune responses. Ultimately, this tool will provide direction and guidance for the logical development of new markers and approaches for studying human lung smooth muscle.
    Full-text · Article · Sep 2013 · PLoS ONE
Show more