Anti-platelet effects of bioactive compounds isolated from the bark of Rhus verniciflua Stokes

ArticleinJournal of Ethnopharmacology 106(1):62-9 · July 2006with18 Reads
DOI: 10.1016/j.jep.2005.12.015 · Source: PubMed
Abstract
It has previously been shown that EtOAc extracts of Rhus verniciflua Stokes (RVS) inhibit the platelet aggregation response. In this report, bioassay-guided fractionation using ADP-, arachidonic acid-, and collagen-induced human platelet aggregation by a whole blood aggregometer yielded the bioactive compounds isomaltol and pentagalloyl glucose from different highly effective fractions. In addition, column chromatography of fractions from RVS yielded another five compounds: butin, fisetin, sulfuretin, butein and 3,4',7,8-tetrahydroxyflavone. We investigated the effects of bioactive compounds from RVS fractions on several markers of platelet activation using receptor expression on platelet membranes, including glycoprotein IIb/IIIa (CD41), GPIIb/IIIa-like expression (PAC-1) and P-selectin (CD62), and intracelluar calcium mobilization responses by flow cytometry in healthy subjects. Dose-dependent inhibition of platelet aggregation and significantly decreased platelet activation were observed for the isomaltol- and pentagalloyl glucose-treated platelets, respectively. These results show that isomaltol and pentagalloyl glucose from the bark of Rhus verniciflua Stokes have potent anti-platelet activity and emphasize the need to further examine the mechanism of these active compounds for platelet modulation.
    • "Butin has biological activities such as skin-whitening, anti-implantation activity (Lee et al. 2006), and anti-oxidative DNA damage (Kang et al. 2009). Sulfuretin has been used to reduce oxidative stress, platelet aggregation, and mutagenesis (Lee et al. 2002; Park et al. 2004; Jeon et al. 2006). Therefore, the pharmacological and physiological activities of butin and sulfuretin and their applications are currently attracting great interest. "
    [Show abstract] [Hide abstract] ABSTRACT: The aim of this study was to separate antityrosinase compounds of the ethyl acetate fraction from Rhus verniciflua Stokes using medium pressure liquid chromatography. Among the different fractions, the Fr.6 fraction showed the highest antityrosinase capacity (96.5%), followed by the Fr.5 fraction (85.6%). The Fr.1 fraction showed the lowest antityrosinase capacity (12.4%). Bioactivity-guided fractionation of Fr.5.5 and Fr.6.4 led to the isolation and identification of butin and sulfuretin. Then the inhibitory effects of butin and sulfuretin on the monophenolase and diphenolase activity of mushroom tyrosinase were investigated. The results showed that butin and sulfuretin can act as potent inhibitors of monophenolase and diphenolase activities of the enzyme, and the IC50 of the butin and sulfuretin were 16.0 μmol/L and 13.64 μmol/L, respectively. The lag period of the enzyme was obviously lengthened; it was estimated to be 1 min in the absence of inhibitor, extended to 26 min in the presence of 185 μmol/L of butin, and 6 min in the presence of 111.1 μmol/L of sulfuretin. A kinetic analysis showed that butin and sulfuretin are competitive inhibitors. The results revealed that the butin and sulfuretin took up the loci of the substrate combined with enzyme, or blocked the anionic initiation by eliminating free radicals, thus weakening the catalytic reaction of oxidation of L-dopa.
    Article · Feb 2016
    • "The antioxidant activity of Rhus verniciflua Stokes is supported by results from other in vitro assays as well [25, 26]activities by in vitro studies. For example, in one study, Rhus verniciflua Stokes showed dose-dependent inhibitory activity towards adenosine diphosphate-(ADP-), collagen-, and arachidonic acid-(AA-) induced aggregation of human platelets [37]. In another study, total extract from Rhus verniciflua Stokes showed Aldo-keto reductase family 1 B10 (AKR1B10), which may be responsible for detoxification of reactive aldehydes, inhibitory activity [38]. "
    [Show abstract] [Hide abstract] ABSTRACT: Despite the fact that numerous researches were performed on prevention and treatment of inflammation related diseases, the overall incidence has not changed remarkably. This requires new approaches to overcome inflammation mediated diseases, and thus traditional medicine could be an efficacious source for prevention and treatment of these diseases. In this review, we discuss the contribution of traditional medicine, especially Rhus verniciflua Stokes, to modern medicine against diverse inflammation mediated diseases. Traditionally, this remedy has been used in Eastern Asia for the treatment of gastric problems, hepatic disorders, infectious diseases, and blood disorders. Modern science has provided the scientific basis for the use of Rhus verniciflua Stokes against such disorders and diseases. Various chemical constituents have been identified from this plant, including phenolic acid, and flavonoids. Cell-based studies have exhibited the potential of this as antibacterial, antioxidant, neuroprotective, anti-inflammatory, growth inhibitory, and anticancer activities. Enormous animal studies have shown the potential of this against proinflammatory diseases, neurodegenerative diseases, diabetes, liver diseases, and chemical insults. At the molecular level, this medicinal plant has been shown to modulate diverse cell-signaling pathways. In clinical studies, Rhus verniciflua Stokes has shown efficacy against various cancer patients such as colorectal, gastric, hepatic, renal, pancreatic, and pulmonary cancers. Thus, this remedy is now exhibiting activities in the clinic.
    Full-text · Article · Jun 2014
    • "Sulfuretin is a major flavonoid isolated from the stem bark of Albizzia julibrissin and heartwood of Rhus verniciflua (Jung et al., 2003; Kim et al., 2010). It has been used to reduce oxidative stress, platelet aggregation, anti-inflammatory activities, and mutagenesis (Jeon et al., 2006; Lee et al., 2002; Park et al., 2004; Song et al., 2010b). Thus, this compound is thought to provide health benefits by decreasing the risk of various diseases, particularly certain cancers, diabetes, and rheumatoid arthritis (Choi et al., 2003; Jang et al., 2003; Kim et al., 2009; Song et al., 2010b). "
    [Show abstract] [Hide abstract] ABSTRACT: Sulfuretin, a potent anti-oxidant, has been thought to provide health benefits by decreasing the risk of oxidative stress-related diseases. In this study, we investigated the mechanisms of sulfuretin protection of neuronal cells from cell death induced by the Parkinson's disease (PD)-related neurotoxin 6-hydroxydopamine (6-OHDA). We examined whether sulfuretin acts as an anti-oxidant to reduce oxidative stress and mitochondrial-mediated apoptotic cascade events in 6-OHDA-induced neurotoxicity in SH-SY5Y cells. We also investigated whether sulfuretin specifically acts by inhibiting phosphorylation of mitogen-activated protein kinase (MAPK), phosphatidylinositol 3-kinase (PI3K)/Akt, and glycogen synthase kinase-3beta (GSK-3β) as well as activation of the nuclear factor-κappa B (NF-κB) pathway. Sulfuretin significantly inhibited neuronal cell death, neurotoxicity, apoptosis, and reactive oxygen species (ROS) production. Sulfuretin also strikingly attenuated 6-OHDA-induced mitochondrial dysfunction. Moreover, sulfuretin significantly attenuated 6-OHDA-induced phosphorylation of c-Jun N-terminal kinase (JNK), p38, extracellular signal-regulated kinase 1/2 (ERK 1/2) MAPKs, PI3K/Akt, and GSK-3β. Eventually, sulfuretin inhibited 6-OHDA-induced NF-κB translocation to the nucleus induced by 6-OHDA. The results of the current study provide the first evidence that sulfuretin protects SH-SY5Y cells against 6-OHDA-induced neuronal cell death, possibly through inhibition of phosphorylation of MAPK, PI3K/Akt, and GSK-3β, which leads to mitochondrial protection, NF-κB modulations and subsequent suppression of apoptosis via ROS-dependent pathways. Thus, we conclude that sulfuretin may have a potential role for neuroprotection and, therefore, may be used as a therapeutic agent for PD.
    Full-text · Article · May 2014
Show more