Functional changes in bladder tissue from type III collagen-deficient mice

School of Dental Medicine, Department of Anatomy & Cell Biology, University of Pennsylvania, Philadelphia, 19104, USA.
Molecular and Cellular Biochemistry (Impact Factor: 2.39). 03/2006; 283(1-2):107-14. DOI: 10.1007/s11010-006-2388-1
Source: PubMed


Collagen fibers impart tensile strength and transfer tension from bladder smooth muscle cells. We have previously shown that fibrotic bladders are characterized by an increased type III:type I collagen ratio. To determine the effect of decreased type III collagen on bladder function, type III collagen-deficient mice (COL3A1) were studied physiologically.
Bladders from wild-type (+/+) and heterozygous (+/-) COL3A1 mice were biochemically characterized to determine total collagen (hydroxyproline analysis) and collagen subtype concentration (cyanogen bromide digestion and ELISA). Alterations in collagen fiber diameter were assessed by electron microscopy. Bladder muscle strips were used to assess physiologic function.
Hydroxyproline content decreased in heterozygous bladders, which had 50% less type III collagen. Wild-type bladders had a biphasic distribution of collagen fiber sizes, whereas heterozygous bladder collagen fibers spanned a broad range. Physiologically, there were no differences in contractile responses between wild-type and heterozygotes when stimulated with ATP, carbachol or KCl, indicating normal contraction via purinergic and muscarinic receptors, and in response to direct membrane depolarization. In contrast, tension generation in heterozygotes was decreased after field stimulation (FS), indicating decreased synaptic transmission. Length-tension studies showed that the heterozygote muscle strips generated less tension per unit length, indicating that they were more compliant than wild-type controls.
Critical levels of type III collagen appear to be a requirement for normal bladder tension development and contraction. Our data show that a decrease in the type III:type I collagen ratio, and altered fiber size, results in a more compliant bladder with altered neurotransmitter function.

10 Reads
  • Source
    • "Because Col3–/– mice rarely survive to weaning, heterozygotes were selected to examine the effect of Col3 deficiency in vivo. It has been previously established that tissue Col3 expression in heterozygotes is ϳ 50% relative to wild-type levels for multiple tissues, including the skin [Liu et al., 1997; Stevenson et al., 2006; Cooper et al., 2010]. Wound healing was examined both grossly and histologically on day 7 postwounding. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The repair of cutaneous wounds in the postnatal animal is associated with the development of scar tissue. Directing cell activities to efficiently heal wounds while minimizing the development of scar tissue is a major goal of wound management and the focus of intensive research efforts. Type III collagen (Col3), expressed in early granulation tissue, has been proposed to play a prominent role in cutaneous wound repair, although little is known about its role in this process. To establish the role of Col3 in cutaneous wound repair, we examined the healing of excisional wounds in a previously described murine model of Col3 deficiency. Col3 deficiency (Col3+/-) in aged mice resulted in accelerated wound closure with increased wound contraction. In addition, Col3-deficient mice had increased myofibroblast density in the wound granulation tissue as evidenced by an increased expression of the myofibroblast marker, α-smooth muscle actin. In vitro, dermal fibroblasts obtained from Col3-deficient embryos (Col3+/- and -/-) were more efficient at collagen gel contraction and also displayed increased myofibroblast differentiation compared to those harvested from wild-type (Col3+/+) embryos. Finally, wounds from Col3-deficient mice also had significantly more scar tissue area on day 21 post-wounding compared to wild-type mice. The effect of Col3 expression on myofibroblast differentiation and scar formation in this model suggests a previously undefined role for this ECM protein in tissue regeneration and repair.
    Full-text · Article · Jun 2011 · Cells Tissues Organs
  • [Show abstract] [Hide abstract]
    ABSTRACT: Bladder hypertrophy is a general consequence of bladder outlet obstruction (BOO) and a typical phenomenon observed in clinical urologic diseases such as benign prostatic hyperplasia and neurogenic bladder. It is characterized by smooth muscle hyperplasia, altered extracellular matrix composition, and increased contractile function. Various growth factors are likely involved in hypertrophic pathophysiology, but their functions remain unknown. In this report, the role of basic fibroblast growth factor (bFGF) was investigated using a rat bladder smooth muscle cell (BSMC) culture system and an original animal model, in which bFGF was released from a gelatin hydrogel directly onto rat bladders. bFGF treatment promoted BSMC proliferation both in vitro and in vivo. In vitro, bFGF downregulated the expression of type I collagen, but upregulated type III collagen. ERK1/2, but not p38MAPK, was activated by bFGF, whereas inhibition of ERK1/2 by PD98059 reversed bFGF-induced BSMC proliferation, type I collagen downregulation, and type III collagen upregulation. In the in vivo release model, bFGF upregulated type III collagen and increased the contractile force of treated bladders. In parallel with these findings, hypertrophied rat bladders created by urethral constriction showed increased urothelial bFGF expression, BSMC proliferation, and increased type III collagen expression compared with sham-operated rats. These data suggest that bFGF from the urothelium could act as a paracrine signal that stimulates the proliferation and matrix production of BSMC, thereby contributing to the hypertrophic remodeling of the smooth muscle layer.
    No preview · Article · Nov 2007 · American journal of physiology. Renal physiology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The objective of this study was to explore, for the first time, the changes in the pangenomic profile induced in human skin in women treated with dehydroepiandrosterone (DHEA) applied locally. Sixty postmenopausal women participated in this phase II prospective, randomized, double-blind and placebo-controlled study. Women were randomized to the twice daily local application of 0% (placebo), 0.3%, 1% or 2% DHEA cream. Changes in the pangenomic expression profile were studied using Affymetrix Genechips. Significant changes (p<0.05) in sixty-six DHEA-responsive probe sets corresponding to 52 well-characterized genes and 9 unknown gene sequences were identified. A dose-dependent increase in the expression of several members of the collagen family was observed, namely COL1, COL3 and COL5 as well as the concomitant modulation of SPARC, a gene required for the normal deposition and maturation of collagen fibrils in the dermis. Several genes involved in the proliferation and differentiation of keratinocytes were also modulated. In addition, topical DHEA reduced the expression of genes associated with the terminal differentiation and cornification of keratinocytes. Our results strongly suggest the possibility that DHEA could exert an anti-aging effect in the skin through stimulation of collagen biosynthesis, improved structural organization of the dermis while modulating keratinocyte metabolism.
    Full-text · Article · Nov 2008 · The Journal of Steroid Biochemistry and Molecular Biology
Show more