Article

Homocysteine and cognitive impairment; a case series in a General Practice setting

Wales College of Medicine, Wrexham, UK.
Nutrition Journal (Impact Factor: 2.6). 02/2006; 5(1):6. DOI: 10.1186/1475-2891-5-6
Source: PubMed

ABSTRACT

An elevated blood level of homocysteine is a risk factor for cognitive impairment and dementia. Homocysteine can be lowered by folate and/or vitamin B12 supplementation; antioxidants might also be required for optimal reduction in neurovascular tissue. This report presents clinical and radiological findings from administering the antioxidant N-acetylcysteine together with B vitamins to cognitively impaired patients with hyperhomocysteinaemia.
A case series (n = 7) performed in a semi-rural General Practice setting. Formal cognitive assessments were performed in five patients, and radiological assessments in one patient, before and after supplementation.
The addition of N-acetylcysteine resulted in subjective clinical improvement in all patients, and an objective improvement in cognitive scores in five patients. One patient had radiological evidence of halted disease progression over a twelve month period.
N-acetylcysteine, together with B vitamin supplements, improves cognitive status in hyperhomocysteinaemic patients. Randomized controlled clinical trials are required to formally evaluate this treatment approach.

Download full-text

Full-text

Available from: Andrew McCaddon, May 06, 2014
  • Source
    • "Potential mechanisms by which Hcy might influence cognition include a direct toxicity on glutamate neurotransmission and cerebrovascular endothelium, an indirect inhibition of transmethylation reactions in brain, potentiation of amyloid neurotoxicity, and promotion of tau phosphorylation (McCaddon 2006). "

    Full-text · Dataset · Aug 2015
  • Source
    • "Potential mechanisms by which Hcy might influence cognition include a direct toxicity on glutamate neurotransmission and cerebrovascular endothelium, an indirect inhibition of transmethylation reactions in brain, potentiation of amyloid neurotoxicity, and promotion of tau phosphorylation (McCaddon 2006). "
    [Show abstract] [Hide abstract]
    ABSTRACT: The purpose of the study was the analysis of cognitive functions in postmenopausal women having different status of homocysteine levels by a battery of computer tests-central nervous system vital signs (CNS-VS). We examined whether homocysteine increases the risk of cognitive decline and which cognitive domains are more affected. We showed that the considerably better neurocognitive index was obtained by women with low homocysteine levels in comparison with those with hyperhomocysteinemia (p = 0.0017). Similarly, results were obtained in the field of executive functioning (p = 0.0011), complex attention (p = 0.0106), cognitive flexibility (p = 0.0016), and memory (p = 0.0145). Verbal memory and visual memory did not differ considerably among the studied groups. Also, we demonstrated that ε4/ε4 genotype was the most common (15.5 %) in women with hyperhomocysteinemia than in groups of patients with low (0 %) or normal (1.9 %) homocysteine levels. In summary, hyperhomocysteinemia was related with increased risk of decline in executive functioning, complex attention, cognitive flexibility, and memory in postmenopausal women.
    Full-text · Article · Mar 2015 · Archives of Women s Mental Health
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hyperhomocysteinemia (HHcy) is related to central nervous system diseases. Epidemiological studies show a positive, dose-dependent relationship between plasma total homocysteine (tHcy) concentration and neurodegenerative disease risk. tHcy is a marker of B-vitamin (folate, B(12), B(6)) status. Hypomethylation, caused by low B-vitamin status and HHcy, is linked to key pathomechanisms of dementia; B-vitamin supplementation could potentially reduce neurological damage. In retrospective studies, the association between tHcy and cognition is impressive; there is also evidence that tHcy-lowering treatment could be effective in primary and secondary stroke prevention. Increased tHcy and low serum folate occur in patients with Parkinson's disease, especially those receiving L-dopa. There is also an association between HHcy and multiple sclerosis, and between B-vitamin status and depression. Studies also confirm a causal role for tHcy in epilepsy, and certain anti-epileptics enhance HHcy. B-vitamin status should be optimized by ensuring sufficient intake in patients with neuropsychiatric diseases. HHcy occurs commonly in the elderly and can contribute to age-related neurodegeneration. Treatment with folic acid, B(12) and B(6) lowers tHcy. For secondary and primary prevention from several neuropsychiatric disorders, it seems prudent to actively identify deficient subjects and ensure sufficient vitamin intake.
    Full-text · Article · Feb 2007 · Clinical Chemistry and Laboratory Medicine
Show more