Article

Horizontal gaze palsy with progressive scoliosis can result from compound heterozygous mutations in ROBO3

Boston Children's Hospital, Boston, Massachusetts, United States
Journal of Medical Genetics (Impact Factor: 6.34). 04/2006; 43(3):e11. DOI: 10.1136/jmg.2005.035436
Source: PubMed

ABSTRACT

Horizontal gaze palsy with progressive scoliosis (HGPPS) is an autosomal recessive disorder characterised by congenital absence of horizontal gaze, progressive scoliosis, and failure of the corticospinal and somatosensory axon tracts to decussate in the medulla. We previously reported that HGPPS patients from consanguineous pedigrees harbour homozygous mutations in the axon guidance molecule ROBO3.
We now report two sporadic HGPPS children of non-consanguineous parents who harbour compound heterozygous mutations in ROBO3. The mother of one of the children also had scoliosis DNA was extracted from a blood sample from each participant using a standard protocol, and the coding exons of ROBO3 were amplified and sequenced as previously described.
Each patient harboured two unique heterozygous mutations in ROBO3, having inherited one mutation from each parent.
HGPPS can result from compound heterozygous mutations. More comprehensive examinations of parents and siblings of HGPPS patients are required to determine if the incidence of scoliosis in individuals harbouring heterozygous ROBO3 mutations is greater than in the general population.

Download full-text

Full-text

Available from: Elias Traboulsi, Feb 09, 2014
  • Source
    • "Horizontal gaze palsy with progressive scoliosis (HGPPS) is characterized by defective eye movement and abnormal curvature of the spine. To date, mutations in the Robo3 gene are the only identified genetic cause for this rare disorder (Chan et al., 2006). Of note is the recurrent R704P missense mutation , which is located on the extracellular part of Robo3 and is found in HGPPS patients from different pedigrees and ethnicities (Kurian et al., 2013). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Robo receptors play pivotal roles in neurodevelopment, and their deregulation is implicated in several neuropathological conditions and cancers. To date, the mechanism of Robo activation and regulation remains obscure. Here we present the crystal structure of the juxtamembrane (JM) domains of human Robo1. The structure exhibits unexpectedly high backbone similarity to the netrin and RGM binding region of neogenin and DCC, which are functionally related receptors of Robo1. Comparison of these structures reveals a conserved surface that overlaps with a cluster of oncogenic and neuropathological mutations found in all Robo isoforms. The structure also reveals the intricate folding of the JM linker, which points to its role in Robo1 activation. Further experiments with cultured cells demonstrate that exposure or relief of the folded JM linker results in enhanced shedding of the Robo1 ectodomain.
    Full-text · Article · Mar 2014 · Journal of Structural Biology
  • Source
    • "Phenotypic variability appears to be quite common in genomic syndromes, and a variety of hypotheses, ranging from a two hit model [9], to occult compound heterozygous mutations within deleted regions [10] "
    [Show abstract] [Hide abstract]
    ABSTRACT: Potocki-Lupski syndrome (PTLS; OMIM 610883) is a genomic syndrome that arises as a result of a duplication of 17p11.2. Although numerous cases of individuals with PTLS have been presented in the literature, its behavioral characterization is still ambiguous. We present a male child with a de novo dup(17)(p11.2p11.2) and he does not possess any autistic features, but is characterized by severe speech and language impairment. In the context of the analyses of this patient and other cases of PTLS, we argue that the central feature of the syndrome appears to be related to diminished speech and language capacity, rather than the specific social deficits central to autism.
    Full-text · Article · Dec 2011 · Brain & development
  • Source
    • "One patient displayed bilateral synergistic convergence without pupil constriction upon attempting to gaze horizontally to one side or the other [5]. Vertical eye movements are mainly unaffected [2,7]. Nystagmus presents in many patients and is mostly horizontal and pendular, with low amplitude [2,3,8]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Clinical and molecular characterization of patients with horizontal gaze palsy with progressive scoliosis (HGPPS) to extend existing knowledge of the phenotype caused by mutations in the Roundabout homolog of Drosophila 3 (ROBO3) gene. Four patients (aged 6 months to 13 years), two of them siblings, with features of horizontal gaze palsy and their parents were examined clinically and by molecular testing of the ROBO3 gene. The three families were unrelated, but parents in each family were consanguineous. We identified three novel homozygous ROBO3 mutations in four patients with typical ophthalmologic signs of HGPPS. We found an exonic insertion/deletion mutation (c.913delAinsTGC; p.Ile305CysfsX13), a 31 bp deletion including the donor splice site of exon 17 and adjacent exonic and intronic sequences (c.2769_2779del11, 2779+1_+20del20), and a missense mutation located next to a splice donor site (c.3319A>C) resulting in skipping of exon 22, as shown by cDNA analysis. We describe three novel mutations in the ROBO3 gene and the detailed clinical phenotype of HGPPS. One patient displayed marked convergence upon attempting smooth pursuits to both sides. In one patient, the typical ophthalmologic phenotype, the neuroradiologic findings, and molecular testing led to the diagnosis even before scoliosis developed. In addition to the typical magnetic resonance imaging brain signs of HGPPS, this patient had marked hypoplasia of the frontal lobes and corpus callosum. In summary, diagnosis of HGPPS may be established by ophthalmologic and molecular investigation early in life, allowing ongoing orthopedic surveillance from an early stage.
    Full-text · Article · Jul 2011 · Molecular vision
Show more