The production of four liver-specific enzymes (tyrosine aminotransferase or TAT, alanine aminotransferase, aldolase B, and alcohol dehydrogenase) has been analyzed in rat hepatoma-mouse lymphoid cell hybrids containing a 1s or 2s complement of rat chromosomes. The hybrid clones which retain a nearly 2s complement of rat chromosomes show high activity of all four enzymes; those which contain a 1s
... [Show full abstract] rat complement show partial or complete extinction of these enzymes. The tyrosine aminotransferase produced by most of the hybrid clones is identifiable as being of both rat and mouse origin, based upon criteria of temperature sensitivity and electrophoretic mobility; antiserum to the rat liver enzyme was used to distinguish the pseudo-TAT produced by the lymphoid parent from liver-TAT produced by hepatoma and hybrid cells. By the criteron of electrophoretic mobility, the liver form (B) of aldolase, produced by only some of the hybrid clones, appears to be composed of both rat and mouse subunits. We conclude that when extinction of tissue-specific proteins does not occur or is only partial in hybrid cells (due to gene dosage effects), the genomes of both parents may be active in directing synthesis of these proteins.