ADP-ribosylating and vacuolating cytotoxin of Mycoplasma pneumoniae represents unique virulence determinant among bacterial pathogens. Proc Nat Acad Sci USA

University of Texas at San Antonio, San Antonio, Texas, United States
Proceedings of the National Academy of Sciences (Impact Factor: 9.67). 05/2006; 103(17):6724-9. DOI: 10.1073/pnas.0510644103
Source: PubMed


Unlike many bacterial pathogens, Mycoplasma pneumoniae is not known to produce classical toxins, and precisely how M. pneumoniae injures the respiratory epithelium has remained a mystery for >50 years. Here, we report the identification of a virulence factor (MPN372) possibly responsible for airway cellular damage and other sequelae associated with M. pneumoniae infections in humans. We show that M. pneumoniae MPN372 encodes a 68-kDa protein that possesses ADP-ribosyltransferase (ART) activity. Within its N terminus, MPN372 contains key amino acids associated with NAD binding and ADP-ribosylating activity, similar to pertussis toxin (PTX) S1 subunit (PTX-S1). Interestingly, MPN372 ADP ribosylates both identical and distinct mammalian proteins when compared with PTX-S1. Remarkably, MPN372 elicits extensive vacuolization and ultimate cell death of mammalian cells, including distinct and progressive patterns of cytopathology in tracheal rings in organ culture that had been previously ascribed to infection with WT virulent M. pneumoniae. We observed dramatic seroconversion to MPN372 in patients diagnosed with M. pneumoniae-associated pneumonia, indicating that this toxin is synthesized in vivo and possesses highly immunogenic epitopes.

Full-text preview

Available from:
  • Source
    • "Recently, we characterized a M. pneumoniae-encoded toxin capable of producing an asthma-like disease in naïve mice [19], [20], [21], [22]. This toxin designated Community Acquired Respiratory Distress Syndrome (CARDS) toxin, has vacuolating and ADP-ribosylating properties causing cytopathic effects both in vitro and in vivo [20]. We showed that recombinant CARDS toxin (rCARDS toxin) produces a robust lymphocytic and eosinophilic inflammation, leading to an asthma-like disease in naïve mice. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Mycoplasma pneumoniae causes a range of airway and extrapulmonary pathologies in humans. Clinically, M. pneumoniae is associated with acute exacerbations of human asthma and a worsening of experimentally induced asthma in mice. Recently, we demonstrated that Community Acquired Respiratory Distress Syndrome (CARDS) toxin, an ADP-ribosylating and vacuolating toxin synthesized by M. pneumoniae, is sufficient to induce an asthma-like disease in BALB/cJ mice. To test the potential of CARDS toxin to exacerbate preexisting asthma, we examined inflammatory responses to recombinant CARDS toxin in an ovalbumin (OVA) murine model of asthma. Differences in pulmonary inflammatory responses between treatment groups were analyzed by histology, cell differentials and changes in cytokine and chemokine concentrations. Additionally, assessments of airway hyperreactivity were evaluated through direct pulmonary function measurements. Analysis of histology revealed exaggerated cellular inflammation with a strong eosinophilic component in the CARDS toxin-treated group. Heightened T-helper type-2 inflammatory responses were evidenced by increased expression of IL-4, IL-13, CCL17 and CCL22 corresponding with increased airway hyperreactivity in the CARDS toxin-treated mice. These data demonstrate that CARDS toxin can be a causal factor in the worsening of experimental allergic asthma, highlighting the potential importance of CARDS toxin in the etiology and exacerbation of human asthma.
    Full-text · Article · Jul 2014 · PLoS ONE
  • Source
    • "The N-terminal region of CARDS toxin shares limited identity with the catalytic domain of many ADPRT toxins (Kannan and Baseman, 2006). To detect protein scaffolds compatible with the CARDS toxin amino acid sequence, we used the program HHPRED and the entire CARDS toxin amino acid sequence as the query. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Community-acquired respiratory distress syndrome (CARDS) toxin from Mycoplasma pneumoniae is a 591 amino acid virulence factor with ADP-ribosyltransferase (ADPRT) and vacuolating activities. It is expressed at low levels during in vitro growth and at high levels during colonization of the lung. Exposure of experimental animals to purified recombinant CARDS toxin alone is sufficient to recapitulate the cytopathology and inflammatory responses associated with M. pneumoniae infection in humans and animals. Here, by molecular modeling, serial truncations and site-directed mutagenesis, we show that the N-terminal region is essential for ADP-ribosylating activity. Also, by systematic truncation and limited proteolysis experiments we identified a portion of the C-terminal region that mediates toxin binding to mammalian cell surfaces and subsequent internalization. In addition, the C-terminal region alone induces vacuolization in a manner similar to full-length toxin. Together, these data suggest that CARDS toxin has a unique architecture with functionally separable N-terminal and C-terminal domains.
    Full-text · Article · Jun 2014 · Molecular Microbiology
  • Source
    • "Recently, it has been reported that the community-acquired respiratory distress syndrome toxin (CARDS Tx) which possesses adenosine diphosphate-ribosyltransferase activity similar to Bordetella pertussis toxin is produced by M. pneumoniae[3]. CARDS Tx was not secreted into the culture supernatant, but localized to the cytoplasmic and cell membranes, inducing vacuolating cytotoxicity. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Mycoplasma pneumoniae is one of the causative organisms of community-acquired pneumonia which is found commonly in younger patients. Extrapulmonary complications similar to autoimmune disease are caused by M. pneumoniae following the initial infection. The mechanism and pathology of onset is not clear, but it is considered that excessive host immunoreactions play a part in the onset of mycoplasmal pneumonia and its extrapulmonary complications. In this study, we investigated the participation of the immune response, excluding the participation of Th1 and Th2 which has previously been investigated. Results In this study, the host immune response of an antigen induced inflammation model using SPF mice repeatedly sensitized with M. pneumoniae antigens was analyzed. The specificity of M. pneumoniae antigens in the Th17 response of murine lymphocytes in vitro was also examined. Frequent and concentrated sensitization induced exacerbation of lung inflammation immunologically and pathologically, and evoked intrapulmonary IL-17A and IL-10 production. M. pneumoniae antigen stimulation induced proliferation of mouse lymphocytes and caused production of IL-17A and IL-10. In addition, it was shown that IL-17A and IL-10 production was increased in the presence of IL-6 and TGF-β1. Conclusions It was shown that M. pneumoniae antigens induced potent immunoreaction and enhanced the Th17 cell response both in vivo and in vitro, and that both Treg and IL-10 are involved in the suppression of IL-17A production. This raises the possibility that breakdown of the immune balance may be part of the process leading to subsequent development of extrapulmonary mycoplasmal pneumonia.
    Full-text · Article · Jun 2014 · BMC Microbiology
Show more