Article

A Pharmacokinetic-Pharmacodynamic Model to Optimize the Phase IIa Development Program of Maraviroc

Department of Clinical Pharmacology, Pfizer Clinical R and D, Groton, CT 06340, USA.
JAIDS Journal of Acquired Immune Deficiency Syndromes (Impact Factor: 4.56). 07/2006; 42(2):183-91. DOI: 10.1097/01.qai.0000220021.64115.37
Source: PubMed

ABSTRACT

To use a viral dynamics model to compare the effectiveness of in vivo viral inhibition of several doses of maraviroc (MVC;UK-427,857) and to use a modeling approach to support design decisions for a monotherapy study using various dosing regimens of maraviroc given with and without food.
The pharmacokinetic-pharmacodynamic model was developed using clinical data from a first monotherapy study (study A4001007). This was a randomized, double-blind, placebo-controlled, multicenter study of maraviroc in 44 asymptomatic HIV-1-infected patients. Patients received maraviroc under food restrictions at 25 mg once daily or 50, 100, or 300 mg twice daily, or placebo for 10 days.
Antiviral responses were assessed by measuring plasma HIV-1 RNA levels during screening, during randomization, at baseline, and daily during the 10 days of treatment and at days 11 to 15, 19, 22, 25, and 40. An integrated pharmacokinetic-pharmacodynamic model was developed using the mixed effects modeling approach with patients' pharmacokinetic profiles on the last day of treatment, HIV-1 RNA levels over time, and the individual viral susceptibility. The parameters derived from the viral dynamic model were used to calculate average viral inhibition fraction, decay rate of actively infected cells, and basic reproductive ratio for each treatment group. Monte Carlo simulation was then used to determine the distribution of viral load change across simulated patients over time for each regimen to be studied in another monotherapy study, A4001015.
The decline rate in the 300 mg twice daily group was comparable to that induced by potent protease inhibitor monotherapy, but was significantly slower than that in patients receiving combination therapy including both protease inhibitor and reverse transcriptase inhibitors. The efficacy of inhibition in vivo was estimated to range from 0.15 to 0.38 for the 25 mg once daily dose group and from 0.88 to 0.96 for the 300 mg twice daily dose group.
The model has aided the analysis and interpretation of the clinical data. The use of a model-based approach for selecting doses can accelerate drug development by replacing some arms or trials with simulations.

  • Source

    Preview · Article ·
  • Source

    Preview · Article ·
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Current highly active antiretroviral therapy (HAART) requires the use of combinations of three drugs to minimize the early emergence of drug-resistant HIV strains. Therefore, long-term monotherapy data with new agents are unavailable. However, the development of computer models for Monte-Carlo-type simulations of antiviral monotherapy, which incorporate HIV infection dynamic distributions from previously studied populations, together with pharmacokinetics and pharmacodynamic parameters of the new agent, could serve as an important tool. The nucleoside lamivudine (3TC) was used as a representative drug to standardize an improved pharmacodynamic and infection dynamic monotherapy model. 3TC plasma concentration versus time profiles was used to drive the cellular accumulation of 3TC-triphosphate (TP) in primary human lymphocytes in the model, over a 16 week period. The fraction of HIV reverse transcription inhibited was calculated using the median inhibitory concentration and intracellular 3TC-TP levels. Virus loads and activated CD4+ T-cell counts were generated for 2,200 theoretical individuals and compared with the outcomes of an actual 3TC monotherapy trial at the same dose. Pharmacokinetic variance alone did not account for the interindividual HIV-load variability. However, selection of appropriate distributions of the various pharmacokinetic and infection dynamics parameters produced a similar range of virus load reductions to actual observations. Therefore, once parameter and variance distributions are standardized, this modelling approach could be helpful in planning clinical trials and predicting the antiviral contribution of each agent in a HAART modality.
    Full-text · Article · Feb 2007 · Antiviral chemistry & chemotherapy
Show more