High-sensitivity vibrational imaging with frequency modulation coherent anti-Stokes Raman scattering (FM CARS) microscopy

Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, USA.
Optics Letters (Impact Factor: 3.29). 07/2006; 31(12):1872-4. DOI: 10.1364/OL.31.001872
Source: PubMed


We demonstrate a new approach to coherent anti-Stokes Raman scattering (CARS) microscopy that significantly increases the detection sensitivity. CARS signals are generated by collinearly overlapped, tightly focused, and raster scanned pump and Stokes laser beams, whose difference frequency is rapidly modulated. The resulting amplitude modulation of the CARS signal is detected through a lock-in amplifier. This scheme efficiently suppresses the nonresonant background and allows for the detection of far fewer vibrational oscillators than possible through existing CARS microscopy methods.

Download full-text


Available from: Conor Evans, Mar 21, 2014
  • Source
    • "This coherent mixing, however, does bring spectral distortions. For CARS microscopies that probe small increments of the full vibrational spectrum, physical methods are utilized to reduce the NRB generation, which in turn reduces the overall CARS signal [8] [9] [10] [7]. For spectroscopic CARS techniques (microspectroscopies), however, two classes of numerical methods are commonly used to remove the distortion of the NRB: one based on maximizing entropy [11] and the other utilizing the Kramers-Kronig (KK) relation [12]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Coherent anti-Stokes Raman scattering (CARS) microspectroscopy has demonstrated significant potential for biological and materials imaging. To date, however, the primary mechanism of disseminating CARS spectroscopic information is through pseudocolor imagery, which explicitly neglects a vast majority of the hyperspectral data. Furthermore, current paradigms in CARS spectral processing do not lend themselves to quantitative sample-to-sample comparability. The primary limitation stems from the need to accurately measure the so-called nonresonant background (NRB) that is used to extract the chemically sensitive Raman information from the raw spectra. Measurement of the NRB on a pixel-by-pixel basis is a nontrivial task; thus, surrogate NRB from glass or water is typically utilized, resulting in error between the actual and estimated amplitude and phase. In this paper, we present a new methodology for extracting the Raman spectral features that significantly suppresses these errors through phase detrending and scaling. Classic methods of error correction, such as baseline detrending, are demonstrated to be inaccurate and to simply mask the underlying errors. The theoretical justification is presented by re-developing the theory of phase retrieval via the Kramers–Kronig relation, and we demonstrate that these results are also applicable to maximum entropy method-based phase retrieval. This new error-correction approach is experimentally applied to glycerol spectra and tissue images, demonstrating marked consistency between spectra obtained using different NRB estimates and between spectra obtained on different instruments. Additionally, in order to facilitate implementation of these approaches, we have made many of the tools described herein available free for download. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.
    Full-text · Article · Oct 2015 · Journal of Raman Spectroscopy
  • Source
    • "CARS [14,15] is much more efficient than spontaneous Raman spectroscopy [16–18], enabling faster, more sensitive analyses with less photo exposure. CARS circumvents the need for extrinsic labels, allowing observation of dynamic phenomena for which tags are not available. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Microalgae are extensively researched as potential feedstocks for biofuel production. Energy-rich compounds in microalgae, such as lipids, require efficient characterization techniques to investigate the metabolic pathways and the environmental factors influencing their accumulation. The model green alga Coccomyxa accumulates significant amounts of triacylglycerols (TAGs) under nitrogen depletion (N-depletion). To monitor the growth of TAGs (lipid) in microalgal cells, a study of microalgal cells (Coccomyxa sp. C169) using both spontaneous Raman and coherent anti-Stokes Raman scattering (CARS) spectroscopy and microscopy were carried out. Spontaneous Raman spectroscopy was conducted to analyze the components in the algal cells, while CARS was carried out to monitor the distribution of lipid droplets in the cells. Raman signals of carotenoid are greater in control microalgae compared to N-depleted cells. Raman signals of lipid droplets appear after N-depletion and its distribution can be clearly observed in the CARS microscopy. Both spontaneous Raman spectroscopy and CARS microscopy were found to be suitable analysis tools for microalgae.
    Full-text · Article · Nov 2012 · Biomedical Optics Express
  • Source
    • "The other corner is occupied by narrowband coherent anti-Stokes Raman scattering (CARS) with just one spectral discriminating line, quadratic concentration dependence and a non-resonant background, but with tremendous speed. In between we fi nd a variety of techniques such as spectrally scanning CARS (Ganikhanov et al. 2006, Kano 2010 ), amplitude shaped stimulated Raman scattering (SRS) (Xie et al. 2011 ) and different incarnations of broadband CARS (Rinia et al. 2007, Motzkus et al. 2009, Parekh et al. 2010 ). In the Optical Sciences Group at the University of Twente we have pursued the use of phase to improve selectivity without sacrifi cing speed in both narrowband and broadband CARS, both of which will be considered in this review. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The phase of the molecular response can be exploited to improve selectivity without sacrifi cing speed in both narrow-band and broadband coherent anti-Stokes Raman scattering (CARS) microscopy, both of which will be considered in this review of the work that was performed in our group.
    Full-text · Article · Mar 2012
Show more