Mass Balance Assessment of Triclosan Removal During Conventional Sewage Treatment

Johns Hopkins University, Bloomberg School of Public Health, Department of Environmental Health Sciences, Johns Hopkins University Center for Water and Health, Baltimore, MD 21205-2103, USA.
Chemosphere (Impact Factor: 3.34). 02/2007; 66(2):362-9. DOI: 10.1016/j.chemosphere.2006.04.066
Source: PubMed


The antimicrobial agent triclosan (5-chloro-2-(2,4-dichlorophenoxy)phenol; TCS) is a member of a larger group of polychlorinated binuclear aromatic compounds frequently associated with adverse environmental and human health effects. Whereas the structure and function of TCS would suggest significant resistance to biotransformation, biological wastewater treatment currently is considered the principal destructive mechanism limiting dispersal of and environmental contamination with this compound. We explored the persistence of TCS in a typical full-scale activated sludge US sewage treatment plant using a mass balance approach in conjunction with isotope dilution liquid chromatography electrospray ionization mass spectrometry (ID-LC-ESI-MS) for accurate quantification. Average influent and effluent concentrations (mean +/- SD) of 4.7+/-1.6 and 0.07+/-0.06 microg 1(-1), respectively, revealed an apparent (liquid-phase) removal efficiency of 98+/-1%. However, further analyses demonstrated that the particle-active TCS (80+/-22% particle-associated in influent) was sequestered into wastewater residuals and accumulated in dewatered, digested sludge to concentrations of 30000+/-11000 microg kg-1. Overall, 50+/-19% (1640+/-610 g d-1) of the disinfectant mass entering the plant (3240+/-1860 g d-1) remained detectable in sludge, and less than half of the total mass (48+/-19%) was biotransformed or lost to other mechanisms. Thus, conventional sewage treatment was demonstrated to be much less effective in destroying the antimicrobial than the aqueous-phase removal efficiency of the plant would make believe. Furthermore, study findings indicate that the common practice of sludge recycling in agriculture results in the transfer of substantial quantities of TCS to US soils used, in part, for animal husbandry and crop production.

7 Reads
  • Source
    • "The consumption of triclosan in this vast array of daily necessities causes its migration in the environment after it is washed down the drain. However, it was observed that a considerable portion of triclosan in wastewater may survive treatment of wastewater treatment plants (WWTPs) and then discharge with water or sit in sewage sludge (Lindstr€ om et al., 2002; Singer et al., 2002; Heidler and Halden, 2007). Triclosan was detected at concentrations of 23e434 ng L À1 in nineteen effluents from Australian WWTPs and up to 75 ng L À1 in surface waters from five rivers receiving effluent discharge from WWTPs (Ying and Kookana, 2007). "
    [Show abstract] [Hide abstract]
    ABSTRACT: The co-exposure to UV irradiation and free chlorine may occur in certain drinking water and wastewater treatment systems. This study investigated the effects of simultaneous low pressure ultraviolet (LPUV) irradiation and free chlorination on the formation of chloroform from triclosan which is a commonly used antibacterial agent. Different treatment systems (i.e., combined UV/chlorine, UV alone, and chlorine alone) were applied to examine the degradation of triclosan and formation of chloroform. The fate of representative intermediates, including chlorinated triclosan, dechlorinated triclosan intermediates and 2,4-dichlorophenol, were tracked to deduce the effect of combined UV/chlorine on the transformation of chloroform formation precursors. The relation between intermediates degradation and chloroform formation was investigated in depth by conducting stepwise experiments with UV and chlorine in different sequences. Results indicate that the combined UV/chlorine notably enhanced the chloroform formation from triclosan. From the reaction mechanism perspective the combined UV/chlorine, where the direct photolysis may play an important role, could accelerate the decay of intermediates and facilitate the generation of productive chloroform precursors. The radicals had modest influence on the degradation of triclosan and intermediates and partly hindered the formation of chloroform. These results emphasize the necessity of considering disinfection by-products formation in the application of combined UV/chlorine technology during water treatment.
    Full-text · Article · Dec 2015 · Chemosphere
  • Source
    • "In 2004, approximately 50–60% of 6.5 million tons (dry weight) of municipal SS produced in the U.S. was land-applied [29]. While land-applied SS offers a source of rich nutrients, they can also release pollutants that become sequestered into the terrestrial food chain or leached into groundwater [30] [31]. A few studies have reported the occurrence of artificial sweeteners, pharmaceuticals, and illicit drugs in agricultural soils following the land application of SS [32] [33] [34]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: As health concerns over bisphenol A (BPA) in consumer products are mounting, this weak estrogen mimicking compound is gradually being replaced with structural analogs, whose environmental occurrence and estrogen risks are not well understood yet. We used high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) to determine the concentrations of eight bisphenol analogs in 76 sewage sludge samples collected by the U.S. Environmental Protection Agency (EPA) in 2006/2007 from 74 wastewater treatment plants (WWTPs) in 35 states. Bisphenols were detected at the following concentration ranges (ng/g dry weight) and detection frequencies: BPA (6.5-4700; 100%); bisphenol S (BPS; <1.79-1480; 84%); bisphenol F (BPF; <1.79-242; 68%); bisphenol AF (BPAF; <1.79-72.2; 46%); bisphenol P (BPP; <1.79-6.42; <5%), bisphenol B (BPB; <1.79-5.60; <5%), and bisphenol Z (BPZ; <1.79--66.7; <5%). Bisphenol AP (BPAP) was not detected in any of the samples (<1.79ng/gdw). Concentrations of BPA in sewage sludge were an order of magnitude higher than those reported in China but similar to those in Germany. The calculated 17β-estradiol equivalents (E2EQ) of bisphenols present in sludge samples were 7.74 (0.26-90.5)pg/gdw, which were three orders of magnitude lower than the estrogenic activity contributed by natural estrogens present in the sludge. The calculated mass loading of bisphenols through the disposal of sludge and wastewater was <0.02% of the total U.S. production. As the usage of BPA is expected to decline further, environmental emissions of BPS, BPF, and BPAF are likely to increase in the future. This study establishes baseline levels and estrogenic activity of diverse bisphenol analogs in sewage sludge. Copyright © 2015 Elsevier B.V. All rights reserved.
    Full-text · Article · Jul 2015 · Journal of hazardous materials
  • Source
    • "3% ± 13 . 6% ) derived from determinations in both aqueous and particulate phase ( Bester , 2003 ; Heidler and Halden , 2007 ; Stasinakis et al . , 2008 ; Lozano et al . "
    [Show abstract] [Hide abstract]
    ABSTRACT: Excreted trace organic chemicals, e.g., pharmaceuticals and biocides, typically undergo incomplete elimination in municipal wastewater treatment plants (WWTPs) and are released to surface water via treated effluents and to agricultural soils through sludge amendment and/or irrigation with freshwater or reclaimed wastewater. Recent research has shown the tendency for these substances to accumulate in food crops. In this study, we developed and applied a simulation tool to predict the fate of three ionizable trace chemicals (triclosan—TCS, furosemide—FUR, ciprofloxacin—CIP) from human consumption/excretion up to the accumulation in soil and plant, following field amendment with sewage sludge or irrigation with river water (assuming dilution of WWTP effluent). The simulation tool combines the SimpleTreat model modified for fate prediction of ionizable chemicals in a generic WWTP and a recently developed dynamic soil-plant uptake model. The simulation tool was tested using country-specific (e.g., consumption/emission rates, precipitation and temperature) input data. A Monte Carlo-based approach was adopted to account for the uncertainty associated to physico-chemical and biokinetic model parameters.
    Full-text · Article · Jul 2015 · Water Research
Show more