Potential Oscillations in Galvanostatic Electrooxidation of Formic Acid on Platinum: A Mathematical Modeling and Simulation

College of Science and Engineering, Tokyo Denki University, Hatoyama, Saitama 350-0394, Japan.
The Journal of Physical Chemistry B (Impact Factor: 3.3). 07/2006; 110(24):11912-7. DOI: 10.1021/jp061129j
Source: PubMed


We have modeled temporal potential oscillations during the electrooxidation of formic acid on platinum on the basis of the experimental results obtained by time-resolved surface-enhanced infrared absorption spectroscopy (J. Phys. Chem. B 2005, 109, 23509). The model was constructed within the framework of the so-called dual-path mechanism; a direct path via a reactive intermediate and an indirect path via strongly bonded CO formed by dehydration of formic acid. The model differs from earlier ones in the intermediate in the direct path. The reactive intermediate in this model is formate, and the oxidation of formate to CO2 is rate-determining. The reaction rate of the latter process is represented by a second-order rate equation. Simulations using this model well reproduce the experimentally observed oscillation patterns and the temporal changes in the coverages of the adsorbed formate and CO. Most properties of the voltammetric behavior of formic acid, including the potential dependence of adsorbate coverages and a negative differential resistance, are also reproduced.

2 Reads
  • Source
    • "This pattern has been commonly observed in a vast number of electrochemical oscillators [6,13,22,37] and has been described as a self-organized poisoning/cleaning cyclic process, in which the slowly accumulating poisoning species are oxidized at high potentials. Generally speaking, it can be inferred that the main poisoning species for the oscillations in acidic media is adsorbed carbon monoxide [9,16,38,39,40]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: We report a comprehensive study of the electro-oxidation of ethylene glycol (EG) on platinum with emphasis on the effects exerted by the electrolyte pH, the EG concentration, and temperature, under both regular and oscillatory conditions. We extracted and discussed parameters such as voltammetric activity, reaction orders (with respect to [EG]), oscillation's amplitude, frequency and waveform, and the evolution of the mean electrode potential at six pH values from 0 to 14. In addition, we obtained the apparent activation energies under several different conditions. Overall, we observed that increasing the electrolyte pH results in a discontinuous transition in most properties studied under both voltammetric and oscillatory regimes. As a relevant result in this direction, we found that the increase in the reaction order with pH is mediated by a minimum (~ 0) at pH = 12. Furthermore, the solution pH strongly affects all features investigated, c.f. the considerable increase in the oscillatory frequency and the decrease in the, oscillatory, activation energy as the pH increase. We suggest that adsorbed CO is probably the main surface-blocking species at low pH, and its absence at high pH is likely to be the main reason behind the differences observed. The size of the parameter region investigated and the amount of comparable parameters and properties presented in this study, as well as the discussion that followed illustrate the strategy of combining investigations under conventional and oscillatory regimes of electrocatalytic systems.
    Full-text · Article · Sep 2013 · PLoS ONE
  • Source
    • "For HCOOH oxidation on Pt in acidic media, carboxyhydroxyl (COOH ads ) has long been considered as the reactive intermediate [8] [9] [10] [11]. However, it has never been captured at electrode–electrolyte interfaces by spectroscopic techniques although it was successfully detected in gas phase [38]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Electrooxidation of formate on high-surface Pt black in alkaline media has been studied at varying temperature by means of cyclic voltammetry and stripping voltammetry. In the positive-going scans from 0.10 to 1.2 V vs RHE, the formate oxidation produces three oxidation current peaks: (i) peak I (at potentials where the coverages of both surface hydrogen and oxygen-species are very low), (ii) peak II (exhibiting obvious potential shift from 0.66 to 0.51 V upon increasing temperature from 20 to 80 °C), and (iii) peak III (at higher potentials where a considerable formation of surface oxygen species commences). Both peaks I and II are closely correlated but they are independent of peak III. Among the three peaks, the temperature dependence of peak II is well in agreement with that of the stripping peak of a CO adlayer. These results suggest a triple-path reaction mechanism. Adsorption of formate onto Pt surfaces may result in formation of precursor adsorbates with different reactivity. Analogous to the reported dual-path mechanism, active precursor adsorbate is responsible for (i) a direct path involving the formate oxidation to CO2 (leading to peak I), and (ii) an indirect path involving the formation of surface CO and its further oxidation to CO2 (leading to peak II). An independent third path via oxidation of less-active precursor adsorbate to CO2 with adsorbed HCOO as the most likely intermediate accounts for peak III. All the oxidation reactions involved in the triple paths are accelerated by increasing reaction temperature with different apparent activation energies. At elevated temperature, diffusion-limited oxidation currents are attained. It is suggested that both the activities of surface OH and precursor adsorbates play a major role in mediating the reaction mechanism as well as participating in the formate oxidation.
    Full-text · Article · Aug 2013 · Electrochimica Acta
  • [Show abstract] [Hide abstract]
    ABSTRACT: Surface-enhanced infrared absorption spectroscopy (SEIRAS) combined with cyclic voltammetry or chronoamperometry has been utilized to examine kinetic and mechanistic aspects of the electrocatalytic oxidation of formic acid on a polycrystalline Pt surface at the molecular scale. Formate is adsorbed on the electrode in a bridge configuration in parallel to the adsorption of linear and bridge CO produced by dehydration of formic acid. A solution-exchange experiment using isotope-labeled formic acids (H(12)COOH and H(13)COOH) reveals that formic acid is oxidized to CO(2) via adsorbed formate and the decomposition (oxidation) of formate to CO(2) is the rate-determining step of the reaction. The adsorption/oxidation of CO and the oxidation/reduction of the electrode surface strongly affect the formic acid oxidation by blocking active sites for formate adsorption and also by retarding the decomposition of adsorbed formate. The interplay of the involved processes also affects the kinetics and complicates the cyclic voltammograms of formic acid oxidation. The complex voltammetric behavior is comprehensively explained at the molecular scale by taking all these effects into account.
    No preview · Article · Sep 2006 · The Journal of Physical Chemistry B
Show more