Expression analysis of genes involved in fat assimilation in human monocytes

Molecular Nutrition, Christian-Albrechts University, Kiel, Germany.
International Union of Biochemistry and Molecular Biology Life (Impact Factor: 3.14). 08/2006; 58(7):435-40. DOI: 10.1080/15216540600791563
Source: PubMed


The metabolic syndrome X is characterized by a group of risk factors such as obesity, atherogenic dyslipidemia, hypertension, and insulin resistance. To study the functional alterations resulting from genetic variations, ex vivo studies are one option to be carried out. Since it is not an easy procedure to obtain cells from the related tissues ex vivo, the aim of the present study was to investigate whether monocytes can serve as model cells. The purpose was to check if monocytes are insulin target cells or not and to elucidate the expression of genes involved in fat assimilation. Human monocytes were drawn from venous blood of healthy donors, aged 25 - 30, using density gradient separation and antibody-based magnetic cell sorting of CD14-positive cells. An expression analysis of genes was performed using RT-PCR and Western Blot. Transcripts of the three splice-variants of the Acyl-CoA binding protein (ACBP), the Medium-chain Acyl-CoA Synthetase 1 (MACS1), the Insulin Receptor (INSR) and the Peroxisome Proliferator-activated Receptor gamma (PPARgamma) are consistently expressed in monocytes of all donors. Differences in gene expression between donors are found for two other members of the MACS-family, the fatty acid transport protein 3 (FATP3) and the FATP4. On protein level, we tested for ACBP expression. The ACBP protein is consistently expressed in monocytes of all donors. Human monocytes are insulin target cells and capable of fatty acid metabolism to some extent. Ex vivo-derived monocytes could be used in additional studies for analyzing differences in genotype-dependent expression levels of genes involved in fat assimilation such as ACBP, MACS1 or PPARgamma.

Download full-text


Available from: Christina Vock
  • Source
    • "Different isoforms of acyl-CoA synthetases were identified in leukocytes. Human monocytes express a medium chain acyl-CoA synthetase and accessory acyl-CoA transporters including acyl-CoA binding protein [26]. Lymphocytes also are capable of expressing specific acyl-CoA synthetases as demonstrated in mouse lines [27]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The transition period of dairy cattle is characterized by dramatic changes in metabolism and host defense mechanisms that are associated with increased disease. Intense lipid mobilization from tissue stores is an important metabolic adaptation during the transition period that results in significant release of non-esterified fatty acids (NEFA) into the blood stream. Whereas these fatty acids are important sources of energy during times of increased metabolic demands, elevated concentrations of NEFA are known to disrupt several immune and inflammatory functions. This review will discuss the implications of lipid mobilization on inflammatory responses with special emphasis on leukocytes and endothelial cell functions during the transition period of dairy cows.
    Full-text · Article · Feb 2011 · Comparative immunology, microbiology and infectious diseases
  • Source
    • "Fasting venous blood samples were taken at the first and last day of the treatment periods. Monocytes (CD14 positive) were isolated from EDTA-blood by density centrifugation with LymphoPrep™ (retailer Progen, Wieblingen, Germany) and successive positive selection with magnetic beads (Miltenyi Biotec, Bergisch Gladbach, Germany) as described previously [27]. RNA was isolated from monocytes using the Qiagen RNeasy Kit (Qiagen, Hilden, Germany). "
    [Show abstract] [Hide abstract]
    ABSTRACT: There is increasing evidence that the intracellular antioxidant enzyme paraoxonase 2 (PON2) may have a protective function in the prevention of atherogenesis. An enhancement of PON2 activity by dietary factors including flavonoids is therefore of interest. In the present study we determined the effect of quercetin on paraoxonase 2 levels in cultured murine macrophages in vitro and in overweight subjects with a high cardiovascular risk phenotype supplemented with 150 mg quercetin/day for 42 days in vivo. Supplementation of murine RAW264.7 macrophages in culture with increasing concentrations of quercetin (1, 10, 20 μmol/L) resulted in a significant increase in PON2 mRNA and protein levels, as compared to untreated controls. Unlike quercetin, its glucuronidated metabolite quercetin-3-glucuronide did not affect PON2 gene expression in cultured macrophages. However the methylated quercetin derivative isorhamnetin enhanced PON2 gene expression in RAW264.7 cells to similar extent like quercetin. Although supplementing human volunteers with quercetin was accompanied by a significant increase in plasma quercetin concentration, dietary quercetin supplementation did not change PON2 mRNA levels in human monocytes in vivo. Current data indicate that quercetin supplementation increases PON2 levels in cultured monocytes in vitro but not in human volunteers in vivo.
    Full-text · Article · Sep 2009 · International Journal of Molecular Sciences
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Our present study reveals significant decelerating effects on senescence processes in middle-aged SAMP1 mice supplemented for 6 or 14 months with the reduced form (Q(10)H(2), 500 mg/kg BW/day) of coenzyme Q(10) (CoQ(10)). To unravel molecular mechanisms of these CoQ(10) effects, a genome-wide transcript profiling in liver, heart, brain and kidney of SAMP1 mice supplemented with the reduced (Q(10)H(2)) or oxidized form of CoQ(10) (Q(10)) was performed. Liver seems to be the main target tissue of CoQ(10) intervention, followed by kidney, heart and brain. Stringent evaluation of the resulting data revealed that Q(10)H(2) has a stronger impact on gene expression than Q(10), primarily due to differences in the bioavailability. Indeed, Q(10)H(2) supplementation was more effective than Q(10) to increase levels of CoQ(10) in the liver of SAMP1 mice. To identify functional and regulatory connections of the "top 50" (p<0.05) Q(10)H(2)-sensitive transcripts in liver, text mining analysis was used. Hereby, we identified Q(10)H(2)-sensitive genes which are regulated by peroxisome proliferator-activated receptor-alpha and are primarily involved in cholesterol synthesis (e.g. HMGCS1, HMGCL and HMGCR), fat assimilation (FABP5), lipoprotein metabolism (PLTP) and inflammation (STAT-1). These data may explain, at least in part, the decelerating effects on degenerative processes observed in Q(10)H(2)-supplemented SAMP1 mice.
    Preview · Article · Jun 2009 · Molecular Nutrition & Food Research
Show more