Cortical Electric Response Audiometry Hearing Threshold Estimation: Accuracy, Speed, and the Effects of Stimulus Presentation Features

Department of Clinical Engineering, Royal Liverpool University Hospital, Liverpool, United Kingdom.
Ear and Hearing (Impact Factor: 2.84). 11/2006; 27(5):443-56. DOI: 10.1097/01.aud.0000233902.53432.48
Source: PubMed


A number of stimulus presentation features of the tone burst-evoked N1-P2 cortical response were investigated to identify any advantage over simple stimulation when the test is used for hearing threshold estimation. The speed of establishing objective thresholds at 1, 3, and 8 kHz in both ears was also measured in what was designed to be an efficient test protocol, together with the precision of the threshold estimates with reference to subjects' conventional audiograms.
Twenty-four volunteer subjects were recruited and tested by both behavioral and electrophysiological methods. A low-intensity, 3-kHz stimulus was used when the stimulus features were studied. The parameter was the N1-P2 amplitude.
Changing the side of presentation (randomly or by alternating ears), varying the interstimulus interval and inserting a 10-second recovery period midway though an averaging run had no demonstrable effect on response amplitude, both individually or in combination, contrary to earlier reports. Establishing the 6 threshold estimates took an average 20.6 minutes. The mean error in the N1-P2 threshold estimate was 6.5 dB, with no significant effect of frequency. After correcting for this bias, 94% of individual threshold estimates were within 15 dB of the behavioral threshold and 80% were within 10 dB.
This study suggests that cortical electric response audiometry has a performance that is as good as or better than the auditory brain stem response for threshold estimation in adults and that sophisticated stimulation techniques do not appear to be required. An efficient test protocol that automates many laborious tasks reduces the test time to less than half that previously reported in the literature for this response.

23 Reads
  • Source
    • "In many clinical settings, cortical auditory evoked potential (CAEP) testing is increasingly being used for hearing threshold estimation (Lightfoot and Kennedy 2006; Van Dun et al. 2014) as well as hearing aid fitting evaluation (Van Dun et al. 2012). Often, CAEP testing is used in populations where accurate behavioral responses cannot be elicited such as in infants, children, and populations with a disability, as well as cases of pseudohypacusis, as the test can be conducted on awake participants. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Abstract Objective: To determine if one-octave multi-tone (MT) stimuli increase the amplitude of cortical auditory evoked potentials (CAEPs) in individuals with a hearing loss when compared to standard pure-tone (PT) stimuli and narrow-bands noise (NBN). Method: CAEPs were obtained from 16 hearing impaired (HI) adults in response to PT and MT auditory stimuli centered around 0.5, 1, 2 and 4 kHz and NBN centered around 1 and 2 kHz. Hearing impairment ranged from a mild to a moderate hearing loss in both ears. The auditory stimuli were monaurally delivered through insert ear-phones at 10 and 20dB above threshold. The root mean square (RMS) amplitude of the CAEP and the detectability of the responses using Hotelling’s T2 were calculated and analyzed. Results: CAEP amplitudes elicited with MT stimuli were in average 29% larger than PT stimuli for frequencies centered around 1, 2 and 4 kHz. No significant difference was found for responses to 0.5 kHz stimuli. Significantly higher objective detection scores were found for MT as compared to PT. For the 1 and 2 kHz stimuli, the CAEP amplitudes to NBN were not significantly different to those evoked by PT but a significant difference was found between MT stimuli and both NBN and PT. The mean detection sensitivity of MT for the four frequencies was 80% at 10 dB SL and 95% at 20dB SL, and was comparable with detection sensitivities observed in normal-hearing subjects. Conclusion: Using MT stimuli when testing CAEPs in adults with hearing impairment showed larger amplitudes and a higher objective detection sensitivity compared to using traditional PT stimuli for frequencies centered around 1, 2 and 4 kHz. These findings suggest that MT stimuli are a clinically useful tool to increase the efficiency of frequency-specific CAEP testing in adults with hearing impairment.
    Full-text · Article · Oct 2015 · Journal of the American Academy of Audiology
  • Source
    • "They found that speech identification abilities decreased when exposed to poorer signal-to-noise ratios with the performance decrement paralleled by both increased N1 latencies and decreased N1 amplitudes. More importantly, the latency and amplitude of the N1 significantly correlated with behavioral assessments of signal detectability (Martin et al., 1997) with electrophysiological thresholds closely approximating behavioral thresholds (Lightfoot and Kennedy, 2006). These findings suggest that AEPs provide a sensitive measure of signal audibility, which may prove useful at evaluating the effects of age-related hearing loss on central auditory processing. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Aging is often accompanied by hearing loss, which impacts how sounds are processed and represented along the ascending auditory pathways and within the auditory cortices. Here, we assess the impact of mild binaural hearing loss on the older adults' ability to both process complex sounds embedded in noise and to segregate a mistuned harmonic in an otherwise periodic stimulus. We measured auditory evoked fields (AEFs) using magnetoencephalography while participants were presented with complex tones that had either all harmonics in tune or had the third harmonic mistuned by 4 or 16% of its original value. The tones (75 dB sound pressure level, SPL) were presented without, with low (45 dBA SPL), or with moderate (65 dBA SPL) Gaussian noise. For each participant, we modeled the AEFs with a pair of dipoles in the superior temporal plane. We then examined the effects of hearing loss and noise on the amplitude and latency of the resulting source waveforms. In the present study, results revealed that similar noise-induced increases in N1m were present in older adults with and without hearing loss. Our results also showed that the P1m amplitude was larger in the hearing impaired than in the normal-hearing adults. In addition, the object-related negativity (ORN) elicited by the mistuned harmonic was larger in hearing impaired listeners. The enhanced P1m and ORN amplitude in the hearing impaired older adults suggests that hearing loss increased neural excitability in auditory cortices, which could be related to deficits in inhibitory control.
    Full-text · Article · Jan 2014 · Frontiers in Systems Neuroscience
  • Source
    • "Also, rise times between 20 and 30 ms result in the largest N1 amplitudes with either no further change, or decrease, in amplitude with longer rise times [40, 41]. Perhaps different results may have been obtained using stimuli with more typical rise/fall times and overall durations, such as 20 ms rise time and 60 ms total duration [22, 23, 42–44], although a recent study by Easwar and colleagues [45] suggests little difference in SCPs to hearing-aid-processed stimuli with 7.5 ms versus 20 ms rise times. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Slow cortical potentials (SCPs) are currently of great interest in the hearing aid fitting process for infants; however, there is conflicting evidence in the literature concerning the use of SCPs for this purpose. The current study investigated SCP amplitudes and latencies in young normal-hearing listeners in response to a 60 ms duration tonal stimulus (1000 Hz) presented at three intensities (30, 50, and 70 dB SPL) in aided and unaided conditions using three hearing aids (Analog, DigitalA, and DigitalB) with two gain settings (20 and 40 dB). Results showed that SCP amplitudes were smaller for the digital hearing aids compared with the analog hearing aid, and none of the hearing aids resulted in a reliable increase in response amplitude relative to the unaided across conditions. SCP latencies in analog conditions were not significantly different from latencies in the unaided conditions; however, both digital hearing aids resulted in significantly delayed SCP latencies. The results of the current study (as well as several previous studies) indicate that the SCP may not accurately reflect the amplified stimulus expected from the prescribed hearing aids. Thus, “aided-SCP” results must be interpreted with caution, and more research is required concerning possible clinical use of this technique.
    Full-text · Article · Oct 2012 · International Journal of Otolaryngology
Show more