Yu C, Friday BB, Lai JP, Yang L, Sarkaria J, Kay NE et al.. Cytotoxic synergy between the multikinase inhibitor sorafenib and the proteasome inhibitor bortezomib in vitro: induction of apoptosis through Akt and c-Jun NH2-terminal kinase pathways. Mol Cancer Ther 5: 2378-2387

Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA.
Molecular Cancer Therapeutics (Impact Factor: 5.68). 10/2006; 5(9):2378-87. DOI: 10.1158/1535-7163.MCT-06-0235
Source: PubMed


This study was undertaken to characterize preclinical cytotoxic interactions for human malignancies between the multikinase inhibitor sorafenib (BAY 43-9006) and proteasome inhibitors bortezomib or MG132. Multiple tumor cell lines of varying histiotypes, including A549 (lung adenocarcinoma), 786-O (renal cell carcinoma), HeLa (cervical carcinoma), MDA-MB-231 (breast), K562 (chronic myelogenous leukemia), Jurkat (acute T-cell leukemia), MEC-2 (B-chronic lymphocytic leukemia), and U251 and D37 (glioma), as well as cells derived from primary human glioma tumors that are likely a more clinically relevant model were treated with sorafenib or bortezomib alone or in combination. Sorafenib and bortezomib synergistically induced a marked increase in mitochondrial injury and apoptosis, reflected by cytochrome c release, caspase-3 cleavage, and poly(ADP-ribose) polymerase degradation in a broad range of solid tumor and leukemia cell lines. These findings were accompanied by several biochemical changes, including decreased phosphorylation of vascular endothelial growth factor receptor-2, platelet-derived growth factor receptor-beta, and Akt and increased phosphorylation of stress-related c-Jun NH2-terminal kinase (JNK). Inhibition of Akt was required for synergism, as a constitutively active Akt protected cells against apoptosis induced by the combination. Alternatively, the JNK inhibitor SP600125 could also protect cells from apoptosis induced by the combination, indicating that both inhibition of Akt and activation of JNK were required for the synergism. These findings show that sorafenib interacts synergistically with bortezomib to induce apoptosis in a broad spectrum of neoplastic cell lines and show an important role for the Akt and JNK pathways in mediating synergism. Further clinical development of this combination seems warranted.

Download full-text


Available from: Jinping Lai, Jan 29, 2016
  • Source
    • "The mechanism that HBO potentiates the anticancer effect of sorafenib may be attributed to two aspects. Sorafenib induces apoptosis through inhibition of survival pathways such as STAT3 or Akt [36]–[38] while HBO treatment produces reactive oxygen species, which is also known to mediate apoptosis. Thus, HBO naturally should exacerbate the apoptosis induced by sorafenib. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Hypoxia is a common phenomenon in solid tumors, associated with chemotherapy and radiotherapy resistance, recurrence and metastasis. Hyperbaric oxygen (HBO) therapy can increase tissue oxygen pressure and content to prevent the resistance, recurrence and metastasis of cancer. Presently, Sorafenib is a first-line drug, targeted for hepatocellular carcinoma (HCC) but effective in only a small portion of patients and can induce hypoxia. The purpose of this study is to investigate the effect of HBO in combination with sorafenib on hepatoma cells.
    Full-text · Article · Jun 2014 · PLoS ONE
  • Source
    • "Among these, sorafenib seems to have a pivotal role. It has been demonstrated in various tumour cell lines that sorafenib induced mitochondrial damage manifested by cytochrome c release into the cytosol, caspase 9 and 3 activation, and in consequence , apoptosis mediated through an intrinsic pathway (Huang et al. 2010; Rahmani et al. 2007; Yu et al. 2006). On the other hand, other experiments showed that apoptosis after sorafenib treatment was correlated with an external pathway with caspase 8 activation (Park et al. 2010). "
    [Show abstract] [Hide abstract]
    ABSTRACT: The aim of the present study was to investigate the effect of sorafenib and quercetin on the induction of apoptosis and autophagy in human anaplastic astrocytoma (MOGGCCM) and glioblastoma multiforme (T98G) cell lines. In MOGGCCM cells, sorafenib initiated mainly apoptosis, mediated by the mitochondrial pathway with mitochondrial membrane permeabilization, cytochrome c release to the cytoplasm, and activation of caspase 9 and 3. Additional incubation with quercetin potentiated the pro-apoptotic properties of sorafenib. In T98G cells, autophagy was observed most frequently after the sorafenib treatment. It was accompanied by increased beclin 1 and LC3II expression. Administration of quercetin after the sorafenib treatment resulted in an increased number of autophagic cells. After simultaneous drug application, the level of autophagy was lower in favour of apoptosis. Inhibition of heat shock proteins expression by specific small interfering RNA significantly increased the sensitivity of both the cell lines to induction of apoptosis, but not autophagy. We demonstrated for the first time that sorafenib and quercetin are very effective programmed cell death inducers in T98G and MOGGCCM cells, especially in cells with blocked expression of heat shock proteins.
    Full-text · Article · Dec 2013 · Neurotoxicity Research
  • Source
    • "In contrast, the resistant cell line Caco2 did not show such AKT suppressive behavior. These observations match a previous report that a constitutively active AKT protects cells against sorafenib/bortezomib-induced apoptosis [26, 27]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background We initiated this preclinical study in order to analyze the impact of sorafenib single treatment versus combination treatment in human colorectal cancer. Methods The effect of increasing sorafenib doses on proliferation, apoptosis, migration, and activation of signal cascades was analyzed in vitro. The effect of sorafenib single treatment versus 5-fluorouracil (5-FU) single treatment and combination therapy on in vivo proliferation and target cytokine receptor/ligand expression was analyzed in a human colon cancer xenograft mouse model using HT29 tumor cells. Results In vitro, SW480 and HT29 cell lines were sensitive to sorafenib, as compared to Caco2 and SW620 cell lines, independent of the mutation status of K-ras, Raf, PTEN, or PI3K. The effect on migration was marginal, but distinct differences in caspases activation were seen. Combination strategies were beneficial in some settings (sorafenib + 5-FU; irinotecan) and disadvantageous in others (sorafenib + oxaliplatin), depending on the chemotherapeutic drug and cell line chosen. Sensitive cell lines revealed a downregulation of AKT and had a weak expression level of GADD45β. In resistant cell lines, pp53 and GADD45β levels decreased upon sorafenib exposure. In vivo, the combination treatment of sorafenib and 5-FU was equally effective as the respective monotherapy concerning tumor proliferation. Interestingly, treatment with either sorafenib or 5-FU resulted in a significant decrease of VEGFR1 and PDGFRβ expression intensity. Conclusions In colorectal cancer, a sensitivity towards sorafenib exists, which seems similarly effective as a 5-FU monotherapy. A combination therapy, in contrast, does not show any additional effect.
    Full-text · Article · Sep 2012 · International Journal of Colorectal Disease
Show more