Oxygen alters caveolin-1 and nitric oxide synthase-3 functions in ovine fetal and neonatal lung microvascular endothelial cells

Division of Neonatology, Rm. 207, RB-1, Los Angeles Biomedical Research Institute at Harbor UCLA Medical Center, 1124 West Carson St., Torrance, CA 90502, USA.
AJP Lung Cellular and Molecular Physiology (Impact Factor: 4.08). 12/2006; 291(5):L1079-93. DOI: 10.1152/ajplung.00526.2005
Source: PubMed


We determined the effect of oxygen [approximately 100 Torr (normoxia) and approximately 30-40 Torr (hypoxia)] on functions of endothelial nitric oxide (NO) synthase (NOS-3) and its negative regulator caveolin-1 in ovine fetal and neonatal lung microvascular endothelial cells (MVECs). Fetal NOS-3 activity, measured as NO production with 0.5-0.9 microM 4-amino-5-methylamino-2,7-difluorofluorescein, was decreased in hypoxia by 14.4% (P < 0.01), inhibitable by the NOS inhibitor N-nitro-L-arginine, and dependent on extracellular arginine. Caveolar function, assessed as FITC-BSA (160 microg/ml) endocytosis, was decreased in hypoxia by 13.5% in fetal and 22.8% in neonatal MVECs (P < 0.01). NOS-3 and caveolin-1 were physically associated, as demonstrated by coimmunoprecipitation and colocalization, and functionally associated, as shown by cross-activation of endocytosis, by their specific antibodies and activation of NOS by albumin. Caveolin peptide, containing the sequence for the PKC phosphorylation site of caveolin, and caveolin antiserum against the site increased NO production and endocytosis by 12.3% (P < 0.05) and 16% (P < 0.05), respectively, in normoxia and increased endocytosis by 25% (P < 0.001) in hypoxia. PMA decreased NO production in normoxia and hypoxia by 19.32% (P < 0.001) and 11.8% (P < 0.001) and decreased endocytosis in normoxia by 20.35% (P < 0.001). PKC kinase activity was oxygen sensitive, and threonine phosphorylation was enhanced in hypoxia. Pertussis toxin increased caveolar and NOS functions. These data support our hypothesis that increased Po(2) at birth promotes dissociation of caveolin-1 and NOS-3, with an increase in their activities, and that PKC and an oxygen-sensitive cell surface G protein-coupled receptor regulate caveolin-1 and NOS-3 interactions in fetal and neonatal lung MVECs.

Download full-text


Available from: Theresa John, May 13, 2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: The present study addressed whether chronic hypoxia is associated with reduced nitric oxide (NO) release due to decreased activation of endothelial NO synthase (eNOS). Primary cultures of endothelial cells from human umbilical veins (HUVECs) were used and exposed to different oxygen levels for 24 h, after which NO release, intracellular calcium, and eNOS activity and phosphorylation were measured after 24 h. Direct measurements using a NO microsensor showed that in contrast to 1-h exposure to 5% and 1% oxygen (acute hypoxia), histamine-evoked (10 microM) NO release from endothelial cells exposed to 5% and 1% oxygen for 24 h (chronic hypoxia) was reduced by, respectively, 58% and 40%. Furthermore, chronic hypoxia also lowered the amount and activity of eNOS enzyme. The decrease in activity could be accounted for by reduced intracellular calcium and altered eNOS phosphorylation. eNOS Ser(1177) and eNOS Thr(495) phosphorylations were reduced and increased, respectively, consistent with lowered enzyme activity. Akt kinase, which can phosphorylate eNOS Ser(1177), was also decreased by hypoxia, regarding both total protein content and the phosphorylated (active) form. Moreover, the protein content of beta- actin, which is known to influence the activity of eNOS, was almost halved by hypoxia, further supporting the fall in eNOS activity. In conclusion, chronic hypoxia in HUVECs reduces histamine-induced NO release as well as eNOS expression and activity. The decreased activity is most likely due to changed eNOS phosphorylation, which is supported by decreases in Akt expression and phosphorylation. By reducing NO, chronic hypoxia may accentuate endothelial dysfunction in cardiovascular disease.
    No preview · Article · Dec 2007 · AJP Heart and Circulatory Physiology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: 1. Endothelial nitric oxide synthase (NOS3) is important for vascular homeostasis. The role of protein kinase G (PKG) in regulation of NOS3 activity was studied in primary cultures of newborn lamb lung microvascular endothelial cells (LMVEC). 2. We determined the presence of PKG in fetal and neonatal LMVEC as well as subcellular localization of PKG isoforms in the neonatal cells by fluorescence immunohistochemistry. We used diaminofluorescein (DAF) fluorophore to measure nitric oxide (NO) production from neonatal LMVEC. We confirmed that NO measured was from constitutive NOS3 by inhibiting it with NOS inhibitors. 3. To identify a role for PKG in basal NO production, we measured NO release from LMVEC cells using 4-amino-5-methylamino-2',7'-difluorofluorescein (DAF-FM; 0.5-0.8 micromol/L) with and without prior stimulation with the PKG activator 8-bromo-cGMP (8-Br-cGMP; 0.3 and 3 micromol/L) or prior PKG inhibition with beta-phenyl-1,N2-etheno-8-bromoguanosine-3',5'-cyclic monophosphorothionate (BPC; 0.3 and 3 micromol/L). With the same drugs, we determined the role of PKG on cellular expression of NOS3 and serine 116 phosphorylated NOS (pSer116-NOS) by qualitative and quantitative immunofluorescence assays, as well as western blotting. 4. Because PKG 1 beta was distributed throughout the cytosol in a punctate expression, we used 2 mmol/L cyclodextrin, a cholesterol extractor, to determine a role for lipid vesicles in PKG regulation of NO production. 5. Protein kinase G 1 beta gave a punctate appearance, indicating its presence in intracellular vesicles. Nitric oxide production decreased by approximately 20% with 300 nmol/L and 3 micromol/L 8-Br cGMP (P < 0.05) and increased by 20.8 +/- 3.7% with 3 micromol/L BPC (P < 0.001), indicating that both stimulated and basal PKG activity has inhibitory effects on basal NOS3 function. Nitric oxide synthase immunofluorescence and immunoblot expression were decreased and pSer116-NOS immunofluorescence was increased by 800 nmol/L 8-Br-cGMP and 170 micromol/L (Z)-1-[2-(2-aminoethyl)-N-(2-ammonio-ethyl)amino]diazen-1-ium-1, 2-diolate (DETANONOate). The effect of cyclodextrin indicated that cholesterol extraction interfered with PKG inhibition of NOS. Further examination of pSer116-NOS by immunohistochemistry showed it abundant in the endoplasmic reticulum and colocalized with PKG 1 beta, especially in nuclear vesicles. 6. We conclude that endothelial PKG is involved in endogenous regulation of basal NOS3 activity with the involvement of lipid structures, the endoplasmic reticulum and the nucleus. Protein kinase G 1 beta is colocalized with pSer116-NOS, indicating that PKG action may involve serine 116 phosphorylation on NOS.
    Full-text · Article · Feb 2008 · Clinical and Experimental Pharmacology and Physiology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Neuroblastoma cells are capable of hypoxic adaptation, but the mechanisms involved are not fully understood. We hypothesized that caveolin-1 (cav-1), a plasma membrane signal molecule, might play a role in protecting neuroblastoma cells from oxidative injury by modulating nitric oxide (NO) production. We investigated the alterations of cav-1, cav-2, nitric oxide synthases (NOS), and NO levels in human SK-N-MC neuroblastoma cells exposed to hypoxia with 2% [O2]. The major discoveries include: (i) cav-1 but not cav-2 was up-regulated in the cells exposed to 15 h of hypoxia; (ii) NO donor 1-[N, N-di-(2-aminoethyl) amino] diazen-1-ium-1, 2-diolate up-regulated the expression of cav-1, whereas the non-selective NOS inhibitor N(G)-nitro-L-arginine methyl ester and inducible NOS (iNOS) inhibitor 1400W each abolished the increase in cav-1 expression in the hypoxic SK-N-MC cells. These results suggest that iNOS-induced NO production contributes to the up-regulation of cav-1 in the hypoxic SK-N-MC cells. Furthermore, we studied the roles played by cav-1 in regulating NO, NOS, and apoptotic cell death in the SK-N-MC cells subjected to 15 h of hypoxic treatment. Both cav-1 transfection and cav-1 scaffolding domain peptide abolished the induction of iNOS, reduced the production of NO, and reduced the rates of apoptotic cell death in the hypoxic SK-N-MC cells. These results suggest that increased expression of cav-1 in response to hypoxic stimulation could prevent oxidative injury induced by reactive oxygen species. The interactions of cav-1, NO, and NOS could be an important signal pathway in protecting the neuroblastoma cells from oxidative injury, contributing to the hypoxic tolerance of neuroblastoma cells.
    Full-text · Article · Sep 2008 · Journal of Neurochemistry
Show more