Activation mechanism for CRAC current and store-operated Ca2+ entry: calcium influx factor and Ca2+-independent phospholipase A2β-mediated pathway. J Biol Chem

Boston University, Boston, Massachusetts, United States
Journal of Biological Chemistry (Impact Factor: 4.57). 12/2006; 281(46):34926-35. DOI: 10.1074/jbc.M606504200
Source: PubMed


Here we tested the role of calcium influx factor (CIF) and calcium-independent phospholipase A2 (iPLA2) in activation of Ca2+ release-activated Ca2+ (CRAC) channels and store-operated Ca2+ entry in rat basophilic leukemia (RBL-2H3) cells. We demonstrate that 1) endogenous CIF production may be triggered by Ca2+ release (net loss) as well as by simple buffering of free Ca2+ within the stores, 2) a specific 82-kDa variant of iPLA2β and its corresponding activity are present in membrane fraction of RBL cells, 3) exogenous CIF (extracted from other species)
mimics the effects of endogenous CIF and activates iPLA2β when applied to cell homogenates but not intact cells, 4) activation of ICRAC can be triggered in resting RBL cells by dialysis with exogenous CIF, 5) molecular or functional inhibition of iPLA2β prevents activation of ICRAC, which could be rescued by cell dialysis with a human recombinant iPLA2β, 6) dependence of ICRAC on intracellular pH strictly follows pH dependence of iPLA2β activity, and 7) (S)-BEL, a chiral enantiomer of suicidal substrate specific for iPLA2β, could be effectively used for pharmacological inhibition of ICRAC and store-operated Ca2+ entry. These findings validate and significantly advance our understanding of the CIF-iPLA2-dependent mechanism of activation of ICRAC and store-operated Ca2+ entry.

Full-text preview

Available from:
  • Source
    • "The fact that overexpression of the two proteins results in reconstituted CRAC currents has enabled us to address questions about their overall communication [54, 68, 107]. In principle, two pathways are possible as to how STIM transmits the signal of store depletion to the activation of Orai channels in the plasma membrane: either by a simple, direct interaction or via a further molecule [11, 22, 95, 105]. Meanwhile, several independent studies, however, have proven direct binding of soluble STIM1 fragments to Orai, thereby inducing constitutive CRAC currents [32, 34, 57, 58, 66, 106]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Store-operated Ca(2+) entry describes the phenomenon that connects a depletion of internal Ca(2+) stores to an activation of plasma membrane-located Ca(2+) selective ion channels. Tremendous progress towards the underlying molecular mechanism came with the discovery of the two respective limiting components, STIM and Orai. STIM1 represents the ER-located Ca(2+) sensor and transmits the signal of store depletion to the plasma membrane. Here it couples to and activates Orai, the highly Ca(2+)-selective pore-forming subunit of Ca(2+) release-activated Ca(2+) channels. In this review, we focus on the molecular steps that these two proteins undergo from store-depletion to their coupling, the activation, and regulation of Ca(2+) currents.
    Full-text · Article · Jul 2012 · Cellular and Molecular Life Sciences CMLS
  • Source
    • "intracellular Ca 2 þ (F 340 /F 380 ) were monitored as previously described [19] [25] [26]. Briefly, HAECs were treated with VEGF or H 2 O 2 for 1.5 min before addition of CaCl 2 (2 mmol/L). "
    [Show abstract] [Hide abstract]
    ABSTRACT: AIMS: Vascular endothelial growth factor (VEGF) increases angiogenesis by stimulating endothelial cell (EC) migration. VEGF-induced nitric oxide ((•)NO) release from (•)NO synthase plays a critical role, but the proteins and signaling pathways that may be redox-regulated are poorly understood. The aim of this work was to define the role of (•)NO-mediated redox regulation of the sarco/endoplasmic reticulum Ca(2+) ATPase (SERCA) in VEGF-induced signaling and EC migration. RESULTS: VEGF-induced EC migration was prevented by the (•)NO synthase inhibitor, N (G)-nitro-L-arginine methyl ester (LNAME). Either VEGF or (•)NO stimulated endoplasmic reticulum (ER) (45)Ca(2+) uptake, a measure of SERCA activity, and knockdown of SERCA2 prevented VEGF-induced EC migration and (45)Ca(2+) uptake. S-glutathione adducts on SERCA2b, identified immunochemically, were increased by VEGF, and were prevented by LNAME or overexpression of glutaredoxin-1 (Glrx-1). Furthermore, VEGF failed to stimulate migration of ECs overexpressing Glrx-1. VEGF or (•)NO increased SERCA S-glutathiolation and stimulated migration of ECs in which wild-type (WT) SERCA2b was overexpressed with an adenovirus, but did neither in those overexpressing a C674S SERCA2b mutant, in which the reactive cysteine-674 was mutated to a serine. Increased EC Ca(2+) influx caused by VEGF or (•)NO was abrogated by overexpression of Glrx-1 or the C674S SERCA2b mutant. ER store-emptying through the ryanodine receptor (RyR) and Ca(2+) entry through Orai1 were also required for VEGF- and (•)NO-induced EC Ca(2+) influx. INNOVATION AND CONCLUSIONS: These results demonstrate that (•)NO-mediated activation of SERCA2b via S-glutathiolation of cysteine-674 is required for VEGF-induced EC Ca(2+) influx and migration, and establish redox regulation of SERCA2b as a key component in angiogenic signaling.
    Full-text · Article · Apr 2012 · Antioxidants & Redox Signaling
  • Source
    • "However, other mechanisms such as the generation of a secondary messenger downstream of STIM1 have also been suggested. According to this hypothesis, upon store depletion STIM1 initiates the synthesis of the Ca 2+ influx factor (CIF; Randriamampita and Tsien, 1993); which through triggering additional downstream effectors eventually leads to the opening of Orai1 (Csutora et al., 2006). In addition, it was also suggested that Orai proteins are also components of another type of Ca 2+ entry channel that is activated by arachidonic acid, in a store-independent manner (Mignen et al., 2008). "
    [Show abstract] [Hide abstract]
    ABSTRACT: The presence of the store-operated Ca(2+) entry channel Orai1 and its function in signal transduction during fertilization have been investigated in mammalian oocytes using the pig as a model. RT-PCR cloning and sequence analysis revealed that Orai1 is expressed in the oocytes with a coding sequence of 921bp. After indirect immunocytochemistry or the overexpression of EGFP-tagged Orai1, the fluorescent signal was present primarily in the cell cortex consistent with plasma membrane localization of the protein. Western blot and real-time PCR results showed that Orai1 expression decreases during oocyte maturation; this is associated with the oocytes gaining the ability to generate a large Ca(2+) influx after store depletion. Downregulation of Orai1 expression by siRNA microinjection blocked Ca(2+) influx after store depletion and subsequent Ca(2+) add-back; the Ca(2+) oscillations induced by the fertilizing sperm were also inhibited in oocytes with downregulated Orai1 levels. At the same time, overexpression of Orai1 in the oocytes also modified store-operated Ca(2+) entry and had an inhibitory effect on the fertilization Ca(2+) signal. The abnormal Ca(2+) signaling due to Orai1 downregulation had a strong negative impact on subsequent embryo development. Co-overexpression of Orai1 and STIM1 on the other hand, led to a dramatic increase in Ca(2+) entry after store depletion. The findings indicate that Orai1 is a plasma membrane-resident Ca(2+) channel that is responsible for mediating Ca(2+) entry after the mobilization of intracellular Ca(2+) in oocytes. Orai1 and a functional store-operated Ca(2+) entry pathway are required to maintain the Ca(2+) oscillations at fertilization and to support proper embryo development.
    Full-text · Article · Mar 2012 · Developmental Biology
Show more