Article

Clonal Analysis of Mouse Development Reveals a Polyclonal Origin for Yolk Sac Blood Islands

Institute of Stem Cell Biology and Regenerative Medicine and Department of Pathology and Developmental Biology, Stanford University School of Medicine, Stanford, California 94305, USA.
Developmental Cell (Impact Factor: 9.71). 11/2006; 11(4):519-33. DOI: 10.1016/j.devcel.2006.08.001
Source: PubMed

ABSTRACT

Direct clonal analysis of tissue and organ maturation in vivo is a critical step in the interpretation of in vitro cell precursor-progeny relationships. We have developed a method to analyze clonal progenitor contributions in vivo using ES cells stably expressing separate fluorescent proteins and placed into normal blastocysts to form tetrachimeras. Here we applied this method to the analysis of embryonic yolk sac blood islands. In most vertebrates, yolk sac blood islands are the initial sites of appearance of hematopoietic and endothelial cells. It has been proposed that these lineages arise from a common clonal progenitor, the hemangioblast, but this hypothesis has not been tested directly in physiological development in vivo. Our analysis shows that each island has contributions from multiple progenitors. Moreover, contribution by individual hemangioblast progenitors to both endothelial and hematopoietic lineages within an island, if it happens at all, is an infrequent event.

Download full-text

Full-text

Available from: Hiroo Ueno
  • Source
    • "The enzyme is expressed on neural stem cells of the subventricular zone[12].Bartel et al.found that NTPDase2 colocalized with the glial glutamate/aspartate transporter (GLAST), which is regarded as a marker of type I cells in taste buds, by using immunohistochemical and enzyme histochemical staining methods[13]. In contrast, Li et al. demonstrated that LECs in basal and suprabasal cell layers as well as taste bud cells in fungiform and circumvallate papillae express NTPDase2 by using in situ hybridization with an NTPDase2 probe[14](Table 1). Moreover, a genetic tracing study of NTPDase2-positive cells (doxycycline inducible, NTPDase2-rtTA/TeTO-Cre; RosaLacZ reporter system) revealed that descendant cells derived from the NTPDase2-positive cells generated filiform, fungiform, and circumvallate papillae as well as taste bud cells in fungiform papillae and circumvallate papillae. "
    [Show abstract] [Hide abstract]
    ABSTRACT: As tongue cancer is one of the major malignant cancers in the world, understanding the mechanism of maintenance of lingual epithelial tissue, which is known to be the origin of tongue cancer, is unquestionably important. However, the actual stem cells that are responsible for the long-term maintenance of the lingual epithelium have not been identified. Moreover, a simple and convenient culture method for lingual epithelial stem cells has not yet been established. Recently, we have shown that Bmi1-positive cells, residing at the second or third layer of the epithelial cell layer at the base of the interpapillary pit (IPP), were slow-cycling and could supply keratinized epithelial cells for over one year, indicating that Bmi1-positive cells are long-term lingual epithelial stem cells. In addition, we have developed a novel lingual epithelium organoid culture system using a three-dimensional matrix and growth factors. Here, we discuss current progress in the identification of lingual stem cells and future applications of the lingual culture system for studying the regulatory mechanisms of the lingual epithelium and for regenerative medicine.
    Preview · Article · Jan 2016 · International Journal of Molecular Sciences
  • Source
    • "Mice were sacrificed, and the testes were fixed in 4% PFA at 4°C overnight, frozen in OCT compound, cut, and analyzed as reported previously3435. Immunostaining was performed using the following primary antibody with anti-GFRα1 (R&D Systems, Minneapolis, MN, USA) or anti-PLZF (Santa Cruz, Dallas, TX, USA) antibody followed by Alexa Fluor 594- or 750-labeled secondary antibodies (Molecular Probes, Eugene, OR, USA). Nuclear counter-staining was performed using Hoechst 33342 (Sigma) as described previously3435. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Asingle cells in undifferentiated spermatogonia are considered to be the most primitive forms of germ stem cells (GSCs). Although GFRα1 is thought to be a marker of Asingle cells, we found that Bmi1(High) is more specific than GFRα1 for Asingle cells. Bmi1(High) expression in Asingle cells is correlated with seminiferous stages, and its expression was followed by the proliferative stage of Asingle GSCs. In contrast, GFRα1 expression was seminiferous stage-independent. Fate analyses of EdU-positive Bmi1(High)-positive cell-derived Asingle cells revealed that these cells self-renewed or generated transient amplifying Apaired cells. Bmi1(High)-positive cells were resistant to irradiation-induced injury, after which they regenerated. Elimination of Bmi1(High)-positive cells from seminiferous tubules resulted in the appearance of tubules with seminiferous stage mismatches. Thus, in this study, we found that Bmi1(High) is a seminiferous stage-dependent marker for long-term GSCs and that Bmi1(High)-positive cells play important roles in maintaining GSCs and in regenerating spermatogenic progenitors after injury.
    Full-text · Article · Aug 2014 · Scientific Reports
  • Source
    • "In these post-MET stages, tubules were polyclonal, derived from multiple mixed progenitors (Figures 3B–3D, dotted white lines) similar to lineage-tracing observations of adult kidneys. We separately generated tetrachimeric mice by injecting mouse embryonic stem cells (mESCs) that stably express separate fluorescent proteins (GFP-mESCs), red fluorescent protein (RFP-mESCs), and cyan fluorescent protein (CFP-mESCs) into wild-type blastocysts (Ueno and Weissman, 2006). Within tetrachimera kidneys, mature nephrons were polyclonal, revealing mixed contributions of clones to individual tubule segments (Fig- ures "
    [Show abstract] [Hide abstract]
    ABSTRACT: The mechanism and magnitude by which the mammalian kidney generates and maintains its proximal tubules, distal tubules, and collecting ducts remain controversial. Here, we use long-term in vivo genetic lineage tracing and clonal analysis of individual cells from kidneys undergoing development, maintenance, and regeneration. We show that the adult mammalian kidney undergoes continuous tubulogenesis via expansions of fate-restricted clones. Kidneys recovering from damage undergo tubulogenesis through expansions of clones with segment-specific borders, and renal spheres developing in vitro from individual cells maintain distinct, segment-specific fates. Analysis of mice derived by transfer of color-marked embryonic stem cells (ESCs) into uncolored blastocysts demonstrates that nephrons are polyclonal, developing from expansions of singly fated clones. Finally, we show that adult renal clones are derived from Wnt-responsive precursors, and their tracing in vivo generates tubules that are segment specific. Collectively, these analyses demonstrate that fate-restricted precursors functioning as unipotent progenitors continuously maintain and self-preserve the mouse kidney throughout life.
    Full-text · Article · May 2014 · Cell Reports
Show more