Analysis of the Extracellular Matric Vesicle Proteiome in mineralizing osteoblasts

Emory University, Atlanta, Georgia, United States
Journal of Cellular Physiology (Impact Factor: 3.84). 02/2007; 210(2):325-35. DOI: 10.1002/jcp.20826
Source: PubMed


Many key processes central to bone formation and homeostasis require the involvement of osteoblasts, cells responsible for accumulation and mineralization of the extracellular matrix (ECM). During this complex and only partially understood process, osteoblasts generate and secrete matrix vesicles (MVs) into the ECM to initiate mineralization. Although they are considered an important component of mineralization process, MVs still remain a mystery. To better understand their function and biogenesis, a proteomic analysis of MVs has been conducted. MVs were harvested by two sample preparation approaches and mass spectrometry was utilized for protein identification. A total of 133 proteins were identified in common from the two MV preparations, among which were previously known proteins, such as annexins and peptidases, along with many novel proteins including a variety of enzymes, osteoblast-specific factors, ion channels, and signal transduction molecules, such as 14-3-3 family members and Rab-related proteins. To compare the proteome of MV with that of the ECM we conducted a large-scale proteomic analysis of collagenase digested mineralizing osteoblast matrix. This analysis resulted in the identification of 1,327 unique proteins. A comparison of the proteins identified from the two MV preparations with the ECM analysis revealed 83 unique, non-redundant proteins identified in all three samples. This investigation represents the first systematic proteomic analysis of MVs and provides insights into both the function and origin of these important mineralization-regulating vesicles.

1 Follower
20 Reads
  • Source
    • "In this regard, it is interesting to note that spp24 has been localized in matrix vesicles, structures critical for bone mineralization [Xiao et al., 2007]. Spp24 is a protein that is produced in the liver and transported to the bone matrix in a protective complex [Zhao et al., 2013]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Secreted phosphoprotein 24 kD (spp24) is a bone matrix protein isolated during attempts to identify osteogenic proteins. It is not osteogenic but performs other important roles in the regulation of bone metabolism, at least in part, by binding to and affecting the activity of members of the BMP/TGF-β family of cytokines. Spp24 exists in a number of forms that preserve the N-terminus and are truncated at the C-terminus. The hypothesized cytokine binding domain is present within the cystatin domain which is preserved in all of the N-terminal products. In this report we describe a C-terminal fragment that is distinct from the cystatin domain and which independently binds to BMP-2 and TGF-β. This fragment inhibited BMP-2 activity in an ectopic bone forming assay. A shorter C-terminal product did not inhibit BMP-2 activity but improved bone quality induced by BMP-2 and produced increased calcium deposition outside of bone. Spp24 has been used to develop several potential therapeutic proteins. These results provide more information on the function of spp24 and provide other materials that can be exploited for clinical interventions. This article is protected by copyright. All rights reserved
    Full-text · Article · Apr 2015 · Journal of Cellular Biochemistry
  • Source
    • "During embryogenesis and post-natal skeletal development, AnxA2 and AnxA5 are present in matrix vesicles secreted by hypertrophic chondrocytes and osteoblasts [10]–[15]. Similarly, Annexins A1, A4, and A7 are also found within matrix vesicles from mineralizing osteoblasts [16]. However, little data exist as to whether, and when, AnxA2 or AnxA5 exert cell-autonomous roles in an osteoblast. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Annexins are a class of calcium-binding proteins with diverse functions in the regulation of lipid rafts, inflammation, fibrinolysis, transcriptional programming and ion transport. Within bone, they are well-characterized as components of mineralizing matrix vesicles, although little else is known as to their function during osteogenesis. We employed shRNA to generate annexin A2 (AnxA2)- or annexin A5 (AnxA5)-knockdown pre-osteoblasts, and determined whether proliferation or osteogenic differentiation was altered in knockdown cells, compared to pSiren (Si) controls. We report that DNA content, a marker of proliferation, was significantly reduced in both AnxA2 and AnxA5 knockdown cells. Alkaline phosphatase expression and activity were also suppressed in AnxA2- or AnxA5-knockdown after 14 days of culture. The pattern of osteogenic gene expression was altered in knockdown cells, with Col1a1 expressed more rapidly in knock-down cells, compared to pSiren. In contrast, Runx2, Ibsp, and Bglap all revealed decreased expression after 14 days of culture. In both AnxA2- and AnxA5-knockdown, interleukin-induced STAT6 signaling was markedly attenuated compared to pSiren controls. These data suggest that AnxA2 and AnxA5 can influence bone formation via regulation of osteoprogenitor proliferation, differentiation, and responsiveness to cytokines in addition to their well-studied function in matrix vesicles.
    Full-text · Article · Sep 2014 · PLoS ONE
  • Source
    • "The extracellular compartment is essential for bone, because it determines most of the bone quality properties, such as its strength, stability, and integrity (58,59). ECM proteins in bone are composed of type I collagen (60,61), and various non-collagenous proteins, such as osteocalcin, osteonectin, bone sialoprotein, and proteoglycans (62), which interact with their receptors, such as AnxA5 (63), or Integrins present at the matrix vesicles (MV) (64). ECM proteins might also mediately regulate osteoblast differentiation, by interacting with growth factors. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Bone is an active tissue, in which bone formation by osteoblast is followed by bone resorption by osteoclasts, in a repeating cycle. Proteomics approaches may allow the detection of changes in cell signal transduction, and the regulatory mechanism of cell differentiation. LC-MS/MS-based quantitative methods can be used with labeling strategies, such as SILAC, iTRAQ, TMT and enzymatic labeling. When used in combination with specific protein enrichment strategies, quantitative proteomics methods can identify various signaling molecules and modulators, and their interacting proteins in bone metabolism, to elucidate biological functions for the newly identified proteins in the cellular context. In this article, we will briefly review recent major advances in the application of proteomics for bone biology, especially from the aspect of cellular signaling.
    Full-text · Article · Feb 2014 · BMB reports
Show more